1
|
Khan A, Pudhuvai B, Shrestha A, Mishra AK, Shah MP, Koul B, Dey N. CRISPR-mediated iron and folate biofortification in crops: advances and perspectives. Biotechnol Genet Eng Rev 2024; 40:4138-4168. [PMID: 37092872 DOI: 10.1080/02648725.2023.2205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Micronutrient deficiency conditions, such as anemia, are the most prevalent global health problem due to inadequate iron and folate in dietary sources. Biofortification advancements can propel the rapid amelioration of nutritionally beneficial components in crops that are required to combat the adverse effects of micronutrient deficiencies on human health. To date, several strategies have been proposed to increase micronutrients in plants to improve food quality, but very few approaches have intrigued `clustered regularly interspaced short palindromic repeats' (CRISPR) modules for the enhancement of iron and folate concentration in the edible parts of plants. In this review, we discuss two important approaches to simultaneously enhance the bioavailability of iron and folate concentrations in rice endosperms by utilizing advanced CRISPR-Cas9-based technology. This includes the 'tuning of cis-elements' and 'enhancer re-shuffling' in the regulatory components of genes that play a vital role in iron and folate biosynthesis/transportation pathways. In particular, base-editing and enhancer re-installation in native promoters of selected genes can lead to enhanced accumulation of iron and folate levels in the rice endosperm. The re-distribution of micronutrients in specific plant organs can be made possible using the above-mentioned contemporary approaches. Overall, the present review discusses the possible approaches for synchronized iron and folate biofortification through modification in regulatory gene circuits employing CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Ankita Shrestha
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maulin P Shah
- Division of Applied and Environmental Microbiology, Enviro Technology Ltd, Ankleshwar, Gujarat, India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Rebolledo P, Carrasco G, Moggia C, Gajardo P, Sant’Ana GR, Fuentes-Peñailillo F, Urrestarazu M, Vendruscolo EP. Assessment of Vegetable Species for Microgreen Production in Unheated Greenhouses: Yield, Nutritional Composition, and Sensory Perception. PLANTS (BASEL, SWITZERLAND) 2024; 13:2787. [PMID: 39409655 PMCID: PMC11479207 DOI: 10.3390/plants13192787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Cultivating microgreens in central-southern Chile in unheated greenhouses offers a viable and productive alternative to growers. In 2023, two experiments were conducted in autumn and spring. These experiments involved the production of microgreens of eleven vegetable species. The tray system with the substrate was employed. Subsequently, agronomic, nutritional, and sensory perception variables were assessed. Despite notable fluctuations in external temperatures between these seasons, a diverse array of microgreens can be successfully cultivated, meeting local consumer preferences. Research indicates that microgreens grown under these conditions exhibit high nutritional quality, serving as a rich source of essential nutrients and bioactive compounds beneficial to human health. This nutritional value remains consistent across autumn and spring, establishing microgreens as a reliable and valuable food option. The observed acceptance and purchasing intentions among the surveyed population suggest a promising market opportunity for introducing these products regionally. Consumers appreciate microgreens' quality and nutritional advantages, underscoring their potential.
Collapse
Affiliation(s)
- Pabla Rebolledo
- Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile; (P.R.); (C.M.); (P.G.)
| | - Gilda Carrasco
- Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile; (P.R.); (C.M.); (P.G.)
| | - Claudia Moggia
- Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile; (P.R.); (C.M.); (P.G.)
| | - Pedro Gajardo
- Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile; (P.R.); (C.M.); (P.G.)
| | | | - Fernando Fuentes-Peñailillo
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica (VRA), Universidad de Talca, Talca 3460000, Chile;
| | | | - Eduardo Pradi Vendruscolo
- Departamento de Agronomia, Universidade Estadual de Mato Grosso do Sul, Cassilândia 79540-000, Brazil;
| |
Collapse
|
3
|
Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. Simultaneous biofortification of vitamin C and mineral nutrients in arugula microgreens. Food Chem 2024; 440:138180. [PMID: 38104455 DOI: 10.1016/j.foodchem.2023.138180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Microgreens have shown promise in improving the overall nutritional value of diets due to their high nutrient density. Agronomic biofortification, is an efficient strategy for enhancing the nutritional value of crops, including microgreens. This study aimed to biofortify vitamin C and other essential nutrients in arugula microgreens using four treatments containing 0.25 % ascorbic acid, pH adjusted with different bases: KOH, Ca(OH)2, ZnCO3, or NaOH and a deionized water control. The results indicate that ascorbic acid-treated microgreens had more vitamin C, greater fresh weight and % dry matter than the control. The ascorbic acid + Zn treatment had an 135 % average increase in vitamin C compared to the control. Microgreens treated with ascorbic acid also showed increased levels of minerals that are present in the nutrient solution, such as potassium, sodium, calcium, and zinc. This research contributes to the growing interest in microgreens biofortification and their role in addressing multi-nutrient deficiencies.
Collapse
Affiliation(s)
- Shivani Kathi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Haydee Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Sukhbir Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
4
|
D'Imperio M, Bonelli L, Mininni C, Renna M, Montesano FF, Parente A, Serio F. Soilless cultivation systems to produce tailored microgreens for specific nutritional needs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3371-3380. [PMID: 38092699 DOI: 10.1002/jsfa.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The awareness of the importance of following dietary recommendations that meet specific biological requirements related to an individual's health status has significantly increased interest in personalized nutrition. The aim of this research was to test agronomic protocols based on soilless cultivation for providing consumers with new dietary sources of iodine (I), as well as alternative vegetable products to limit dietary potassium (K) intake; proposed cultivation techniques were evaluated according to their suitability to obtain such products without compromising agronomic performance. RESULTS Two independent experiments, focused on I and K respectively, were conducted in a commercial greenhouse specializing in soilless production. Four different species were cultivated using three distinct concentrations of I (0, 1.5 and 3 mg L-1 ) and K (0, 60 and 120 mg L-1 ). Microgreens grown in I-rich nutrient solution accumulate more I, and the increase is dose-dependent. Compared to unbiofortified microgreens, the treatments with 1.5 and 3 mg L-1 of I resulted in 4.5 and 14 times higher I levels, respectively. Swiss chard has the highest levels of K (14 096 mg kg-1 of FW), followed by rocket, pea and radish. In radish, rocket and Swiss chard, a total reduction of K content in the nutrient solution (0 mg L-1 ) resulted in an average reduction of 45% in K content. CONCLUSION It is possible to produce I-biofortified microgreens to address I deficiency, and K-reduced microgreens for chronic kidney disease-affected people. Species selection is crucial to customize nutritional profiles according to specific dietary requirements due to substantial mineral content variations across different species. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Massimiliano D'Imperio
- Institute of Sciences of Food Production, CNR - National Research Council of Italy, Bari, Italy
| | - Lucia Bonelli
- Institute of Sciences of Food Production, CNR - National Research Council of Italy, Bari, Italy
| | | | - Massimiliano Renna
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Angelo Parente
- Institute of Sciences of Food Production, CNR - National Research Council of Italy, Bari, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, CNR - National Research Council of Italy, Bari, Italy
| |
Collapse
|
5
|
Frąszczak B, Matysiak R, Smiglak M, Kukawka R, Spychalski M, Kleiber T. Application of Salicylic Acid Derivative in Modifying the Iron Nutritional Value of Lettuce ( Lactuca sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:180. [PMID: 38256734 PMCID: PMC10820467 DOI: 10.3390/plants13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
The present experiment addressed the effects of foliar sprays of different iron (Fe) concentrations (mg L-1), i.e., 2.8 (Fe I), 4.2 (Fe II), and 5.6 (Fe III), as well as an ionic derivative of salicylic acid (iSal) in two doses (10 and 20 mg L-1) on lettuce yield, chlorophyll and carotenoids content, and fluorescence parameters. Chemicals were used individually and in combinations two times, 23 and 30 days after the plants were transplanted. This experiment was carried out in a climate chamber. The Fe and iSal applications generally (except Fe I iSal, 10 mg L-1; Fe I iSal, 20 mg L-1; and Fe III iSal, 20 mg L-1) did not influence the fresh and dry matter content. The concentration of chlorophylls and carotenoids was reduced for all treatments in comparison to the control (without spraying). The Fe content in leaves was promoted in the Fe-treated plants (+70% for Fe III + iSal, 10 mg L-1, and Fe I). The iSal treatment promoted the Mn content. For most combinations, the Zn and Cu accumulations, as well as the fluorescence parameters, decreased after the foliar spray applications. Overall, our study revealed the effectiveness of Fe-DTPA chelate, but not iSal, in increasing the Fe content of lettuce grown in soilless cultivation systems.
Collapse
Affiliation(s)
- Barbara Frąszczak
- Department of Vegetable Crops, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznan, Poland;
| | - Renata Matysiak
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznan, Poland;
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznan, Poland or (M.S.); (R.K.); (M.S.)
- Innosil Sp. z o.o., Rubież 46, 61-612 Poznan, Poland
| | - Rafal Kukawka
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznan, Poland or (M.S.); (R.K.); (M.S.)
- Innosil Sp. z o.o., Rubież 46, 61-612 Poznan, Poland
| | - Maciej Spychalski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznan, Poland or (M.S.); (R.K.); (M.S.)
| | - Tomasz Kleiber
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznan, Poland;
| |
Collapse
|
6
|
Bhaswant M, Shanmugam DK, Miyazawa T, Abe C, Miyazawa T. Microgreens-A Comprehensive Review of Bioactive Molecules and Health Benefits. Molecules 2023; 28:molecules28020867. [PMID: 36677933 PMCID: PMC9864543 DOI: 10.3390/molecules28020867] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Microgreens, a hypothesized term used for the emerging food product that is developed from various commercial food crops, such as vegetables, grains, and herbs, consist of developed cotyledons along with partially expanded true leaves. These immature plants are harvested between 7-21 days (depending on variety). They are treasured for their densely packed nutrients, concentrated flavors, immaculate and tender texture as well as for their vibrant colors. In recent years, microgreens are on demand from high-end restaurant chefs and nutritional researchers due to their potent flavors, appealing sensory qualities, functionality, abundance in vitamins, minerals, and other bioactive compounds, such as ascorbic acid, tocopherol, carotenoids, folate, tocotrienols, phylloquinones, anthocyanins, glucosinolates, etc. These qualities attracted research attention for use in the field of human health and nutrition. Increasing public concern regarding health has prompted humans to turn to microgreens which show potential in the prevention of malnutrition, inflammation, and other chronic ailments. This article focuses on the applications of microgreens in the prevention of the non-communicable diseases that prevails in the current generation, which emerged due to sedentary lifestyles, thus laying a theoretical foundation for the people creating awareness to switch to the recently introduced category of vegetable and providing great value for the development of health-promoting diets with microgreens.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Dilip Kumar Shanmugam
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Chizumi Abe
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
- Correspondence: ; Tel.: +81-22-795-3205
| |
Collapse
|