1
|
Cao M, Wang S, Zhou S, Yan M, Zou Y, Cui Y, Lou X, Gao Y, Chen Y, Han Z, Qian Y, Chen J, Li X. Development of monoclonal antibodies against P. gingivalis Mfa1 and their protective capacity in an experimental periodontitis model. mSphere 2025; 10:e0072124. [PMID: 39699191 PMCID: PMC11774036 DOI: 10.1128/msphere.00721-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a gram-negative, black-pigmented anaerobe, is a major etiological agent and a leading cause of periodontitis. Fimbriae protein Mfa1 is a key virulence factor of P. gingivalis and plays a crucial role in bacterial adhesion, colonization, biofilm formation, and persistent inflammation, making it a promising therapeutic target. However, the role of anti-Mfa1 antibodies and the underlying protective mechanisms remain largely unexplored. Here, we developed and characterized the monoclonal antibodies (mAbs) targeting the Mfa1 protein of P. gingivalis. Function analysis showed that anti-Mfa1 mAbs mediated bacterial agglutination and inhibited P. gingivalis adhesion to saliva-coated hydroxyapatite and host cells. Notably, anti-Mfa1 mAbs significantly reduced bacterial burden and alveolar bone loss in a P. gingivalis-induced experimental periodontitis model. These results show that anti-Mfa1 mAbs can be beneficial in alleviating P. gingivalis infections, and provide important insights for the development of adequate adjuvant treatment regimens for Mfa1-targeted therapeutics. IMPORTANCE Fimbriae (pili) play an important role in bacterial adhesion, invasion of host cells and tissues, and formation of biofilms. Studies have shown that two types of fimbriae of Porphyromonas gingivalis, FimA and Mfa1, are important for colonization and infection through their binding to host tissues and other bacteria. While anti-FimA antibodies have been shown to improve periodontitis, the effect of anti-Mfa1 antibodies on P. gingivalis infection and periodontitis was previously unknown. In this study, we report for the first time that anti-Mfa1 monoclonal antibodies can reduce P. gingivalis infection and improve periodontitis. These findings suggest that Mfa1 represents a promising therapeutic target, and the development of anti-Mfa1 mAbs holds a potential as essential diagnostic and adjunctive therapeutic tools for managing P. gingivalis-related diseases.
Collapse
Affiliation(s)
- Mingya Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Siyu Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Shengke Zhou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Min Yan
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yu Zou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yuan Cui
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Xinyu Lou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yichang Gao
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Ying Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Zijing Han
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yi Qian
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jingying Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Wieczorkiewicz K, Jarząbek A, Bakinowska E, Kiełbowski K, Pawlik A. Microbial Dynamics in Endodontic Pathology-From Bacterial Infection to Therapeutic Interventions-A Narrative Review. Pathogens 2024; 14:12. [PMID: 39860973 PMCID: PMC11768076 DOI: 10.3390/pathogens14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Endodontic infection is a penetration of microorganisms into the dental pulp. Bacteria are the most common entities that induce an infection. This state is associated with significant pain and discomfort. Therapeutic intervention involves removal of infected pulp from the tooth and roots, which eliminates viable tissue, thus creating a tooth less resistant to mechanical pressure. Studies suggest that there are several types of bacteria most commonly associated with endodontic infections. Furthermore, it is considered that different types of pathogens could play a major role in primary and secondary endodontic infections. The aim of this review is to summarize major bacteria involved in the process of endodontic infection. Furthermore, we discuss the bacterial properties that allow them to penetrate dental pulp and hypothesize about possible future treatment strategies.
Collapse
Affiliation(s)
- Klara Wieczorkiewicz
- Laboratory of Paediatric Dentistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72, 70-111 Szczecin, Poland; (K.W.); (A.J.)
| | - Anna Jarząbek
- Laboratory of Paediatric Dentistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72, 70-111 Szczecin, Poland; (K.W.); (A.J.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
3
|
Irfan M, Solbiati J, Duran-Pinedo A, Rocha FG, Gibson FC, Frias-Lopez J. A Porphyromonas gingivalis hypothetical protein controlled by the type I-C CRISPR-Cas system is a novel adhesin important in virulence. mSystems 2024; 9:e0123123. [PMID: 38323815 PMCID: PMC10949514 DOI: 10.1128/msystems.01231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024] Open
Abstract
The ability of many human pathogens to infect requires their ability to adhere to the host surfaces as a first step in the process. Porphyromonas gingivalis, a keystone oral pathogen, uses adhesins to adhere to the surface of the gingival epithelium and other members of the oral microbiome. In a previous study, we identified several proteins potentially linked to virulence whose mRNA levels are regulated by CRISPR-Cas type I-C. Among those, PGN_1547 was highly upregulated in the CRISPR-Cas 3 mutant. PGN_1547 is annotated as a hypothetical protein. Employing homology searching, our data support that PGN_1547 resembles an auto-transporter adhesin of P. gingivalis based on containing the DUF2807 domain. To begin to characterize the function of PGN_1547, we found that a deletion mutant displayed a significant decrease in virulence using a Galleria mellonela model. Furthermore, this mutant was significantly impaired in forming biofilms and attaching to the macrophage-like cell THP-1. Luminex revealed that the PGN_1547 mutant elicited a less robust cytokine and chemokine response from THP-1 cells, and TLR2 predominantly sensed that recombinant PGN_1547. Taken together, these findings broaden our understanding of the toolbox of virulence factors possessed by P. gingivalis. Importantly, PGN_1547, a hypothetical protein, has homologs in another member of the order Bacteroidales whose function is unknown, and our results could shed light on the role of this family of proteins as auto-transport adhesins in this phylogenetic group.IMPORTANCEPeriodontal diseases are among humans' most common infections, and besides their effect on the oral cavity, they have been associated with systemic inflammatory conditions. Among members of the oral microbiome implicated in the development of periodontitis, Porphyromonas gingivalis is considered a keystone pathogen. We have identified a new adhesin that acts as a virulence factor, PGN_1547, which contains the DUF2807 domain, which belongs to the putative auto-transporter adhesin, head GIN domain family. Deletion of this gene lowers the virulence of P. gingivalis and impacts the ability of P. gingivalis to form biofilm and attach to host cells. Furthermore, the broad distribution of these receptors in the order Bacteroidales suggests their importance in colonization by this important group of organisms.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jose Solbiati
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Ana Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Fernanda Godoy Rocha
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Li F, Liu X, Li M, Wu S, Le Y, Tan J, Zhu C, Wan Q. Inhibition of PKM2 suppresses osteoclastogenesis and alleviates bone loss in mouse periodontitis. Int Immunopharmacol 2024; 129:111658. [PMID: 38359663 DOI: 10.1016/j.intimp.2024.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Chronic periodontitis triggers an increase in osteoclastogenesis, with glycolysis playing a crucial role in this process. Pyruvate kinase M2 (PKM2) is a critical enzyme involved in glycolysis and pyruvate metabolism. Yet, the precise function of PKM2 in osteoclasts and their formation remains unclear and requires further investigation. METHODS Bioinformatics was used to investigate critical biological processes in osteoclastogenesis. In vitro, osteoclastogenesis was analyzed using tartrate-resistant acid phosphatase (TRAP) staining, phalloidin staining, quantitative real‑time PCR (RT-qPCR), and Western blotting. Small interfering RNA (siRNA) of PKM2 and Shikonin, a specific inhibitor of PKM2, were used to verify the role of PKM2 in osteoclastogenesis. The mouse model of periodontitis was used to assess the effect of shikonin on bone loss. Analyses included micro computed tomography, immunohistochemistry, flow cytometry, TRAP staining and HE staining. RESULTS Bioinformatic analysis revealed a significant impact of glycolysis and pyruvate metabolism on osteoclastogenesis. Inhibition of PKM2 leads to a significant reduction in osteoclastogenesis. In vitro, co-culture of the heat-killed Porphyromonas gingivalis significantly promoted osteoclastogenesis, concomitant with an increased PKM2 expression in osteoclasts. Shikonin weakened the promoting effect of porphyromonas gingivalis on osteoclastogenesis. In vivo experiments demonstrated that inhibition of PKM2 by shikonin alleviated bone loss induced by periodontitis, suppressed excessive osteoclastogenesis in alveolar bone, and reduced tissue inflammation to some extent. CONCLUSION PKM2 inhibition by shikonin, a specific inhibitor of this enzyme, attenuated osteoclastogenesis and bone resorption in periodontitis. Shikonin appears to be a promising therapeutic agent for treating periodontitis.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Xinyuan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Mingjuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Shuxuan Wu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Yushi Le
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Jingjing Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Chongjie Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Qilong Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
5
|
Meyer HL, Abdelbary MMH, Buhl EM, Kuppe C, Conrads G. Exploring the genetic and functional diversity of Porphyromonas gingivalis long fimbriae. Mol Oral Microbiol 2023; 38:408-423. [PMID: 37750230 DOI: 10.1111/omi.12433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Porphyromonas gingivalis is a key pathobiont in periodontitis. Its long fimbriae consist of a single anchor (FimB), a varying number of stalk (FimA), and three accessory (tip-related) proteins (FimC, FimD, and FimE). Based on 133 strains/genomes available, it was our aim to investigate the diversity within FimA and FimB and explain the variety of long fimbriae (super-)structures. Combining the new forward primer fimAnewF with the established fimAunivR, we were able to amplify and sequence fimA including its leader region covering all genotypes and serotypes for phylogenetic analysis. We designed two primer pairs sensing the presence of an internal stop codon in fimB with an impact on fimbrial length. Finally, we examined fimbrial secondary structures by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The phylogeny of fimA/FimA revealed two new subtypes (IIa and IIb) with specific changes in functional domains and thus adding to the current classification scheme (I, Ib, and II-V). Regarding evolution, we confirm that Porphyromonas gulae fimA-type A is closely related to human P. gingivalis strains of cluster Ib and might be its ancestor genotype. A fimB internal stop codon is rare and was found in ATCC 33277 only. Comparing P. gingivalis TEM/SEM pictures of type I ATCC 33277 with type V OMI622 revealed a broad spectrum of fimbrial structures including bundling, cell-cell knotting, and brick-wall formation. In conclusion, FimA forms more distinct subtypes than previously known. The bundling of long fimbriae, a mechanism known from EPEC/EHEC and Salmonella, is proposed and supported by TEM/SEM pictures for the first time here. The role and variations of terminal accessory FimC-E in superstructure formation and/or (co-) adhesion should be investigated more closely next.
Collapse
Affiliation(s)
- Hendrik Leonhard Meyer
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| |
Collapse
|
6
|
Morales-Olavarría M, Nuñez-Belmar J, González D, Vicencio E, Rivas-Pardo JA, Cortez C, Cárdenas JP. Phylogenomic analysis of the Porphyromonas gingivalis - Porphyromonas gulae duo: approaches to the origin of periodontitis. Front Microbiol 2023; 14:1226166. [PMID: 37538845 PMCID: PMC10394638 DOI: 10.3389/fmicb.2023.1226166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Porphyromonas gingivalis is an oral human pathogen associated with the onset and progression of periodontitis, a chronic immune-inflammatory disease characterized by the destruction of the teeth-supporting tissue. P. gingivalis belongs to the genus Porphyromonas, which is characterized by being composed of Gram-negative, asaccharolytic, non-spore-forming, non-motile, obligatory anaerobic species, inhabiting niches such as the oral cavity, urogenital tract, gastrointestinal tract and infected wound from different mammals including humans. Among the Porphyromonas genus, P. gingivalis stands out for its specificity in colonizing the human oral cavity and its keystone pathogen role in periodontitis pathogenesis. To understand the evolutionary process behind P. gingivalis in the context of the Pophyoromonas genus, in this study, we performed a comparative genomics study with publicly available Porphyromonas genomes, focused on four main objectives: (A) to confirm the phylogenetic position of P. gingivalis in the Porphyromonas genus by phylogenomic analysis; (B) the definition and comparison of the pangenomes of P. gingivalis and its relative P. gulae; and (C) the evaluation of the gene family gain/loss events during the divergence of P. gingivalis and P. gulae; (D) the evaluation of the evolutionary pressure (represented by the calculation of Tajima-D values and dN/dS ratios) comparing gene families of P. gingivalis and P. gulae. Our analysis found 84 high-quality assemblies representing P. gingivalis and 14 P. gulae strains (from a total of 233 Porphyromonas genomes). Phylogenomic analysis confirmed that P. gingivalis and P. gulae are highly related lineages, close to P. loveana. Both organisms harbored open pangenomes, with a strong core-to-accessory ratio for housekeeping genes and a negative ratio for unknown function genes. Our analyses also characterized the gene set differentiating P. gulae from P. gingivalis, mainly associated with unknown functions. Relevant virulence factors, such as the FimA, Mfa1, and the hemagglutinins, are conserved in P. gulae, P. gingivalis, and P. loveana, suggesting that the origin of those factors occurred previous to the P. gulae - P. gingivalis divergence. These results suggest an unexpected evolutionary relationship between the P. gulae - P. gingivalis duo and P. loveana, showing more clues about the origin of the role of those organisms in periodontitis.
Collapse
Affiliation(s)
- Mauricio Morales-Olavarría
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Josefa Nuñez-Belmar
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Dámariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Emiliano Vicencio
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jaime Andres Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Cristian Cortez
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan P. Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|