1
|
Del Fabbro L, Bortolotto VC, Ferreira LM, Sari MHM, Furian AF. Chrysin's anti-inflammatory action in the central nervous system: A scoping review and an evidence-gap mapping of its mechanisms. Eur J Pharmacol 2025; 997:177602. [PMID: 40187596 DOI: 10.1016/j.ejphar.2025.177602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Neuroinflammation is a key driver in the progression of neurodegenerative diseases and central nervous system (CNS) injuries. Chrysin, a natural flavonoid, has demonstrated significant neuroprotective effects due to its anti-inflammatory, antioxidant, and anti-apoptotic properties. This scoping review systematically analyzed 29 studies published between 2005 and 2023, identified through a search of PubMed, Scopus, and Web of Science databases (yielding 1919 initial records). Chrysin mitigates neuroinflammation by inhibiting NF-κB signaling, downregulating pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), and suppressing the expression of key inflammatory enzymes, including iNOS and COX-2. It also modulates critical signaling pathways, such as PI3K/Akt/mTOR and JNK, while enhancing antioxidant defenses through increased activity of enzymes like superoxide dismutase and glutathione peroxidase. Importantly, chrysin exhibits anti-apoptotic effects by regulating the expression of apoptotic markers, including the downregulation of Bax and caspase-3 and the upregulation of Bcl-2, thereby preventing neuronal cell death. These mechanisms have been validated in preclinical CNS inflammation models, including spinal cord injury, traumatic brain injury, ischemia/reperfusion injury, Parkinson's disease, and experimental autoimmune encephalomyelitis. Despite its promising therapeutic potential, limitations such as low bioavailability and the lack of comprehensive clinical studies warrant further investigation. Addressing these gaps could enhance chrysin's translational potential as a viable neuroprotective agent for managing neuroinflammatory and neurodegenerative conditions.
Collapse
Affiliation(s)
- Lucian Del Fabbro
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Vandreza Cardoso Bortolotto
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Itaqui, 97650-000, Rio Grande do Sul, Brazil
| | - Luana Mota Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, 80210-170, Paraná, Brazil
| | - Marcel Henrique Marcondes Sari
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, 80210-170, Paraná, Brazil; Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, 80210-170, Paraná, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil; Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Guerreiro D, Almeida A, Ramalho R. Ketogenic Diet and Neuroinflammation: Implications for Neuroimmunometabolism and Therapeutic Approaches to Refractory Epilepsy. Nutrients 2024; 16:3994. [PMID: 39683388 DOI: 10.3390/nu16233994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Refractory epilepsy, characterized by seizures that do not respond to standard antiseizure medications, remains a significant clinical challenge. The central role of the immune system on the occurrence of epileptic disorders has been long studied, but recent perspectives on immunometabolism and neuroinflammation are reshaping scientific knowledge. The ketogenic diet and its variants have been considered an important medical nutrition therapy for refractory epilepsy and may have a potential modulation effect on the immune system, specifically, on the metabolism of immune cells. In this comprehensive review, we gathered current evidence-based practice, ketogenic diet variants and interventional ongoing clinical trials addressing the role of the ketogenic diet in epilepsy. We also discussed in detail the ketogenic diet metabolism and its anticonvulsant mechanisms, and the potential role of this diet on neuroinflammation and neuroimmunometabolism, highlighting Th17/Treg homeostasis as one of the most interesting aspects of ketogenic diet immune modulation in refractory epilepsy, deserving consideration in future clinical trials.
Collapse
Affiliation(s)
- Daniela Guerreiro
- Nutrition Lab, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Nutritional Immunology-Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Anabela Almeida
- Serviço de Nutrição do Hospital Garcia de Orta (HGO), 2805-267 Almada, Portugal
| | - Renata Ramalho
- Nutrition Lab, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Nutritional Immunology-Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| |
Collapse
|
3
|
Scordino M, Urone G, Frinchi M, Valenza C, Bonura A, Cipollina C, Ciriminna R, Meneguzzo F, Pagliaro M, Mudò G, Di Liberto V. Anti-Apoptotic and Anti-Inflammatory Properties of Grapefruit IntegroPectin on Human Microglial HMC3 Cell Line. Cells 2024; 13:355. [PMID: 38391968 PMCID: PMC10886616 DOI: 10.3390/cells13040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we investigated the beneficial effects of grapefruit IntegroPectin, derived from industrial waste grapefruit peels via hydrodynamic cavitation, on microglia cells exposed to oxidative stress conditions. Grapefruit IntegroPectin fully counteracted cell death and the apoptotic process induced by cell exposure to tert-butyl hydroperoxide (TBH), a powerful hydroperoxide. The protective effects of the grapefruit IntegroPectin were accompanied with a decrease in the amount of ROS, and were strictly dependent on the activation of the phosphoinositide 3-kinase (PI3K)/Akt cascade. Finally, IntegroPectin treatment inhibited the neuroinflammatory response and the basal microglia activation by down-regulating the PI3K- nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)- inducible nitric oxide synthase (iNOS) cascade. These data strongly support further investigations aimed at exploring IntegroPectin's therapeutic role in in vivo models of neurodegenerative disorders, characterized by a combination of chronic neurodegeneration, oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Giulia Urone
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Monica Frinchi
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Chiara Valenza
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
- Istituto di Farmacologia Traslazionale, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Angela Bonura
- Istituto di Farmacologia Traslazionale, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
| | | | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo, Italy; (R.C.); (M.P.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy;
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo, Italy; (R.C.); (M.P.)
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| |
Collapse
|
4
|
Li J, Wu Y, Dong S, Yu Y, Wu Y, Xiang B, Li Q. Research Progress on Neuroprotective Effects of Isoquinoline Alkaloids. Molecules 2023; 28:4797. [PMID: 37375352 DOI: 10.3390/molecules28124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal injury and apoptosis are important causes of the occurrence and development of many neurodegenerative diseases, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs, it is of great significance to alleviate the symptoms and improve the prognosis of these diseases. Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These substances have a wide range of pharmacological effects and significant activity. Although some studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and summarizes their common characteristics. This information can serve as a reference for further research on the neuroprotective effects of isoquinoline alkaloids.
Collapse
Affiliation(s)
- Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yarong Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Shuze Dong
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Ye Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yuhao Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Benhan Xiang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| |
Collapse
|