1
|
Xu Z, Yang L, Chen H, Bai P, Li X, Liu D. Transcriptomic characterization of the functional and morphological development of the rumen wall in weaned lambs fed a diet containing yeast co-cultures of Saccharomyces cerevisiae and Kluyveromyces marxianus. Front Vet Sci 2025; 12:1510689. [PMID: 39911691 PMCID: PMC11794207 DOI: 10.3389/fvets.2025.1510689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction In lambs, the function of the rumen is incompletely developed at weaning, and the inclusion of yeast cultures in the diet can profoundly influence the morphological and functional development of the rumen. Methods In this study, the effects of Saccharomyces cerevisiae and Kluyveromyces marxianus (NM) yeast co-cultures on ruminal histomorphology were assessed, and corresponding transcriptomic changes within the rumen epithelium were identified. In total, 24 lambs were grouped into four groups of six lambs including a control (C) group fed a basal diet, and N, M, and NM groups in which lambs were fed the basal diet, respectively, supplemented with Saccharomyces cerevisiae yeast cultures (30 g/d per head), Kluyveromyces marxianus yeast cultures (30 g/d per head), and co-cultures of both yeasts (30 g/d per head), the experiment lasted for 42 d. Results In morphological analyses, lambs from the NM group presented with significant increases in papilla length, papilla width, and epithelial thickness in the rumen relative to lambs in the C group (p < 0.05). Transcriptomic analyses revealed 202 genes that were differentially expressed between samples from the C and NM groups, with the largest proportion of these genes being associated with the oxidative phosphorylation pathway. In a weighted gene coexpression network analysis, a positive correlation was observed between the MEgreen and MEpurple modules and rumen morphology. Of these modules, the MEgreen module was found to be more closely linked to fatty acid metabolism and oxidative phosphorylation, whereas the MEpurple module was linked to oxidative phosphorylation and fatty acid degradation. Ultimately, these results suggest that dietary supplementation with NM has driven the degradation of fatty acids, the induction of oxidative phosphorylation, the acceleration of lipid metabolism, the production of ATP to sustain ruminal growth, and the maintenance of intracellular NADH/NAD+ homeostasis on weaned lambs and is superior to single yeast fermentation. Discussion These results thus offer a theoretical foundation for further studies examining the mechanisms through which NM cultures can influence ruminal development in lambs.
Collapse
Affiliation(s)
| | | | | | | | | | - Dacheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
He H, Fang C, Liu L, Li M, Liu W. Environmental Driving of Adaptation Mechanism on Rumen Microorganisms of Sheep Based on Metagenomics and Metabolomics Data Analysis. Int J Mol Sci 2024; 25:10957. [PMID: 39456741 PMCID: PMC11508146 DOI: 10.3390/ijms252010957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Natural or artificial selection causes animals to adapt to their environment. The adaptive changes generated by the rumen population and metabolism form the basis of ruminant evolution. In particular, the adaptive drive for environmental adaptation reflects the high-quality traits of sheep that have migrated from other places or have been distant from their origins for a long time. The Hu sheep is the most representative sheep breed in the humid and low-altitude environments (Tai Lake region) in East Asia and has been widely introduced into the arid and high-altitude environments (Tibetan Plateau and Hotan region), resulting in environmental adaptive changes in the Hu sheep. In this study, a joint analysis of the rumen microbial metagenome and metabolome was conducted on Hu sheep from different regions (area of origin and area of introduction) with the objective of investigating the quality traits of Hu sheep and identifying microorganisms that influence the adaptive drive of ruminants. The results demonstrated that the growth performance of Hu sheep was altered due to changes in rumen tissue and metabolism following their introduction to the arid area at relatively high altitude. Metagenomic and metabolomic analyses (five ramsper area) revealed that 3580 different microorganisms and 732 different metabolites were identified in the rumen fluid of arid sheep. Among these, the representative upregulated metabolites were 4,6-isocanedione, methanesulfonic acid and N2-succinyl-L-arginine, while the dominant microorganism was Prevotella ruminicola. The downregulated metabolites were identified as campesterol, teprenone and dihydroclavaminic acid, while the disadvantaged microorganisms were Dialister_succinatiphilus, Prevotella_sp._AGR2160, Prevotella_multisaccharivorax and Selenomonas_bovis. The results of the Pearson analysis indicated that the rumen microbiota and metabolite content of sheep were significantly altered and highly correlated following their relocation from a humid lowland to an arid upland. In particular, the observed changes in rumen microorganisms led to an acceleration of body metabolism, rendering sheep highly adaptable to environmental stress. Prevotella_ruminicola was identified as playing an important role in this process. These findings provide insights into the environmental adaptation mechanisms of sheep.
Collapse
Affiliation(s)
- Haiying He
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi 830052, China; (H.H.); (L.L.); (M.L.)
| | - Chao Fang
- Faculte de Medecine Veterinaire, Universite de Liege, Quartier Vallee 2, Avenue de Cureghem 6 (B43), 4000 Liege, Belgium;
| | - Lingling Liu
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi 830052, China; (H.H.); (L.L.); (M.L.)
| | - Mingming Li
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi 830052, China; (H.H.); (L.L.); (M.L.)
| | - Wujun Liu
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi 830052, China; (H.H.); (L.L.); (M.L.)
| |
Collapse
|
3
|
Wu Z, Zhang F, Su Q, Ji Q, Zhu K, Zhang Y, Hou S, Gui L. Integrating 16S rRNA Sequencing and LC-MS-Based Metabolomics to Evaluate the Effects of Dietary Crude Protein on Ruminal Morphology, Fermentation Parameter and Digestive Enzyme Activity in Tibetan Sheep. Animals (Basel) 2024; 14:2149. [PMID: 39123675 PMCID: PMC11310993 DOI: 10.3390/ani14152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
The dietary crude protein level could affect ruminal fermentation parameters and the microflora of ruminants. The present study's aim was to investigate the effects of different protein level diets on ruminal morphology, fermentation parameters, digestive enzyme activity, microflora and metabolites of Tibetan sheep. Ninety weaned lambs (initial weight of 15.40 ± 0.81 kg, 2 months old) were selected and randomly divided into three groups (six pens/treatment, five rams/pen). Dietary treatments were formulated with 13.03% (high protein, HP), 11.58% (moderate protein, MP) and 10.20% (low protein, LP), respectively. Compared with LP, both papillae length and papillae width were significantly promoted in HP and MP (p < 0.05). The concentrations of ammonia nitrogen, total VFAs, propionic acids and butyric acids in HP were significantly increased compared to those in MP and LP (p < 0.05). The activities of protease and α-amylase in HP were significantly greater than those of LP (p < 0.05). For the ruminal microbial community, higher proportions of phylum Prevotella 1 and Succiniclasticum and genus Rikenellaceae RC9 gut group and Ruminococcus 1 were observed in HP (p < 0.05). A total of 60 differential metabolites (DMs) (28 up, 32 down) between HP and MP; 73 DMs (55 up, 18 down) between HP and LP; and 65 DMs (49 up, 16 down) between MP and LP were identified. Furthermore, four pathways of the biosynthesis of unsaturated fatty acids, tryptophan metabolism, bile secretion and ABC transporters were significantly different (p < 0.05). The abundance of phylum Prevotella 1 was negatively associated with stearic acid and palmitic acid but positively associated with the taurine. The abundance of genus Ruminococcus 1 was negatively associated with stearic acid, oleic acid, erucic acid, Indole-3-acetamide and palmitic acid but positively associated with 6-hydroxymelatonin. In conclusion, a 13.03% CP level improved ruminal morphology, fermentation parameters and digestive enzyme activities through modulating the microbial community and regulating metabolism in Tibetan sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Z.W.); (F.Z.); (Q.S.); (Q.J.); (K.Z.); (Y.Z.); (S.H.)
| |
Collapse
|
4
|
Li D, Liu Z, Duan X, Wang C, Chen Z, Zhang M, Li X, Ma Y. Rumen Development of Tianhua Mutton Sheep Was Better than That of Gansu Alpine Fine Wool Sheep under Grazing Conditions. Animals (Basel) 2024; 14:1259. [PMID: 38731263 PMCID: PMC11083190 DOI: 10.3390/ani14091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The purpose of this experiment was to investigate the differences in rumen tissue morphology, volatile fatty acid content, and rumen microflora between Tianhua mutton sheep and Gansu alpine fine wool sheep under the same grazing conditions. Twelve 30-day-old lambs were randomly selected from two different flocks in Duolong Village and grazed together for a period of 150 days. The rumen tissue was fixed with 4% paraformaldehyde and brought back to the laboratory for H&E staining, the volatile fatty acid content of the rumen contents was detected by gas chromatography, and the rumen flora structure was sequenced by full-length sequencing of the bacterial 16S rRNA gene using the PacBio sequencing platform. The acetic acid and total acid contents of the rumen contents of Tianhua mutton sheep were significantly higher than those of Gansu alpine fine wool sheep (p < 0.05). The rumen papillae height of Tianhua mutton sheep was significantly higher than that of Gansu alpine fine wool sheep (p < 0.05). The diversity and richness of the rumen flora of Tianhua mutton sheep were higher than those of Gansu alpine fine wool sheep, and Beta analysis showed that the microflora structure of the two fine wool sheep was significantly different. At the phylum level, Firmicutes and Bacteroidetes dominated the rumen flora of Tianhua mutton sheep and Gansu alpine fine wool sheep. At the genus level, the dominant strains were Christensenellaceae_R_7_group and Rikenellaceae_RC9_gut_group. LEfSe analysis showed that Prevotella was a highly abundant differential species in Tianhua mutton sheep and lachnospiraccac was a highly abundant differential species in Gansu alpine fine wool sheep. Finally, both the KEGG and COG databases showed that the enrichment of biometabolic pathways, such as replication and repair and translation, were significantly higher in Tianhua mutton sheep than in Gansu alpine fine wool sheep (p < 0.05). In general, there were some similarities between Tianhua mutton sheep and Gansu alpine fine wool sheep in the rumen tissue morphology, rumen fermentation ability, and rumen flora structure. However, Tianhua mutton sheep had a better performance in the rumen acetic acid content, rumen papillae height, and beneficial bacteria content. These differences may be one of the reasons why Tianhua mutton sheep are more suitable for growing in alpine pastoral areas than Gansu alpine fine wool sheep.
Collapse
Affiliation(s)
- Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zhanjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Tianzhu County Animal Disease Prevention and Control Center, Wuwei 733200, China
| | - Xinming Duan
- NongfaYuan Zhejiang Agricultural Development Co., Ltd., Huzhou 313000, China;
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zengping Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Muyang Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xujie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
5
|
Pokhrel B, Jiang H. Postnatal Growth and Development of the Rumen: Integrating Physiological and Molecular Insights. BIOLOGY 2024; 13:269. [PMID: 38666881 PMCID: PMC11048093 DOI: 10.3390/biology13040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The rumen plays an essential role in the physiology and production of agriculturally important ruminants such as cattle. Functions of the rumen include fermentation, absorption, metabolism, and protection. Cattle are, however, not born with a functional rumen, and the rumen undergoes considerable changes in size, histology, physiology, and transcriptome from birth to adulthood. In this review, we discuss these changes in detail, the factors that affect these changes, and the potential molecular and cellular mechanisms that mediate these changes. The introduction of solid feed to the rumen is essential for rumen growth and functional development in post-weaning calves. Increasing evidence suggests that solid feed stimulates rumen growth and functional development through butyric acid and other volatile fatty acids (VFAs) produced by microbial fermentation of feed in the rumen and that VFAs stimulate rumen growth and functional development through hormones such as insulin and insulin-like growth factor I (IGF-I) or through direct actions on energy production, chromatin modification, and gene expression. Given the role of the rumen in ruminant physiology and performance, it is important to further study the cellular, molecular, genomic, and epigenomic mechanisms that control rumen growth and development in postnatal ruminants. A better understanding of these mechanisms could lead to the development of novel strategies to enhance the growth and development of the rumen and thereby the productivity and health of cattle and other agriculturally important ruminants.
Collapse
Affiliation(s)
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
6
|
Wang F, Sha Y, Liu X, He Y, Hu J, Wang J, Li S, Shao P, Chen X, Yang W, Chen Q, Gao M, Huang W. Study of the Interactions between Muscle Fatty Acid Composition, Meat Quality-Related Genes and the Ileum Microbiota in Tibetan Sheep at Different Ages. Foods 2024; 13:679. [PMID: 38472792 DOI: 10.3390/foods13050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The intestinal microbiota of ruminants is an important factor affecting animal production and health. Research on the association mechanism between the intestinal microbiota and meat quality of ruminants will play a positive role in understanding the formation mechanism of meat quality in ruminants and improving production efficiency. In this study, the fatty acid composition and content, expression of related genes, and structural characteristics of the ileum microbiota of ewes of Tibetan sheep at different ages (4 months, 1.5 years, 3.5 years, and 6 years) were detected and analyzed. The results revealed significant differences in fatty acid composition and content in the muscle of Tibetan sheep at different ages (p < 0.05); in addition, the content of MUFAs in the longissimus dorsi muscle and leg muscle was higher. Similarly, the expressions of muscle-related genes differed among the different age groups, and the expression of the LPL, SCD, and FABP4 genes was higher in the 1.5-year-old group. The ileum microbiota diversity was higher in the 1.5-year-old group, the Romboutsia abundance ratio was significantly higher in the 1.5-year-old group (p < 0.05), and there was a significant positive correlation with oleic acid (C18:1n9c) (p < 0.05). In conclusion, the content of beneficial fatty acids in the longissimus dorsi muscle and leg muscle of Tibetan sheep was higher at 1.5 years of age, and the best slaughter age was 1.5 years. This study provides a reference for in-depth research on the mechanism of the influence of the gut microbiota on meat quality and related regulation.
Collapse
Affiliation(s)
- Fanxiong Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Sha
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengyang Shao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaowei Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenxin Yang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianling Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Gao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Huang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Bian G, Yu S, Cheng C, Huang H, Liu J. Ruminal microbiota-host crosstalks promote ruminal epithelial development in neonatal lambs with alfalfa hay introduction. mSystems 2024; 9:e0103423. [PMID: 38179946 PMCID: PMC10878101 DOI: 10.1128/msystems.01034-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 01/06/2024] Open
Abstract
Ruminal microbiota is gradually established after birth, while microbiota maturation could be highly diverse because of varied solid dietary accessibility. However, how the ruminal microbiota accreted from postnatal hay diets alters rumen epithelial development, and how this affects animal health remains largely unknown. Here, neonatal lambs were introduced to starchy corn-soybean starter or corn-soybean starter + alfalfa hay (AH) to investigate the influences of early life ruminal microbiome on rumen epithelial development using integrated 16s rRNA sequencing-metagenome-transcriptome approaches. The results showed that AH introduction elevated average daily weight gain, rumen weight and volume, rumen epithelial papillae length, and rumen muscle layer thickness. Meanwhile, the relative abundance of fibrolytic bacteria (Christensenellaceae R-7 group, Prevotellaceae UCG-001, and Succinivibrio), acetate producer (Acetitomaculum and Mitsuokella), and propionate producer Succiniclasticum was increased in the rumen content by AH supplementation (P < 0.05). Moreover, AH introduction decreased the relative abundance of total CAZymes, CBM, and GH and increased the abundance of KO genes related to volatile fatty acid (VFA) generation in the rumen content. AH lambs had a higher relative abundance of Succiniclasticum, Megasphaera, Succinivibrio, and Suttonella (P < 0.05), while a lower relative abundance of Cloacibacillus, Desulfovibrio, Dialister, Intestinimonas, Parabacteroides, and Pseudoscardovia (P < 0.05) in the rumen epithelial samples. Furthermore, these alterations in ruminal microbial structure and function resulted in ruminal epithelial cell proliferation and development pathways activation. In summary, AH introduction benefited ruminal fiber degradation and VFA generation bacteria colonization and promoted ruminal epithelial development. These findings provide new insights into ruminal microbial-host interactions in the early life.IMPORTANCEWhile it is established that a fiber-rich diet promotes rumen development in lambs, further research is needed to investigate the precise response of rumen microbiota and epithelium to high-quality alfalfa hay. Here, we observed that the inclusion of alfalfa hay led to a discernible alteration in the developmental trajectory of the rumen. Notably, there was a favorable shift in the rumen's volume, morphology, and the development of rumen papillae. Furthermore, ruminal microbial structure and function resulted in ruminal epithelial cell proliferation and development pathways activation, collectively provide compelling evidence supporting the capacity of alfalfa hay to enhance rumen development and health through ruminal micrbiota-host crosstalks. Our findings elucidate the functional response of the rumen to alfalfa hay introduction, providing new insights into strategies for promoting healthy development of the rumen in young ruminants.
Collapse
Affiliation(s)
- Gaorui Bian
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Shiqiang Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chao Cheng
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haixuan Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Junhua Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Sha Y, Liu X, He Y, Zhao S, Hu J, Wang J, Li W, Shao P, Wang F, Chen X, Yang W, Xie Z. Multi-omics revealed rumen microbiota metabolism and host immune regulation in Tibetan sheep of different ages. Front Microbiol 2024; 15:1339889. [PMID: 38414776 PMCID: PMC10896911 DOI: 10.3389/fmicb.2024.1339889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
The rumen microbiota and metabolites play an important role in energy metabolism and immune regulation of the host. However, the regulatory mechanism of rumen microbiota and metabolite interactions with host on Tibetan sheep's plateau adaptability is still unclear. We analyzed the ruminal microbiome and metabolome, host transcriptome and serum metabolome characteristics of Tibetan sheep at different ages. Biomarkers Butyrivibrio, Lachnospiraceae_XPB1014_group, Prevotella, and Rikenellaceae_RC9_gut_group were found in 4 months, 1.5 years, 3.5 years, and 6 years Tibetan sheep, respectively. The rumen microbial metabolites were mainly enriched in galactose metabolism, unsaturated fatty acid biosynthesis and fatty acid degradation pathways, and had significant correlation with microbiota. These metabolites further interact with mRNA, and are co-enriched in arginine and proline metabolism, metabolism of xenobiotics by cytochrome P450, propanoate metabolism, starch and sucrose metabolism, gap junction pathway. Meanwhile, serum metabolites also have a similar function, such as chemical carcinogenesis - reactive oxygen species, limonene and pinene degradation, and cutin, suberine and wax biosynthesis, thus participating in the regulation of the body's immune and energy-related metabolic processes. This study systematically revealed that rumen microbiota, metabolites, mRNA and serum metabolites of Tibetan sheep were involved in the regulation of fermentation metabolic function and immune level of Tibetan sheep at different ages, which provided a new perspective for plateau adaptability research of Tibetan sheep at different ages.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Fanxiong Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiaowei Chen
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Yang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhuanhui Xie
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|