1
|
Brandt TJ, Skaggs H, Hundley T, Yoder-Himes DR. Burkholderia cenocepacia-mediated inhibition of Staphylococcus aureus growth and biofilm formation. J Bacteriol 2025; 207:e0011623. [PMID: 40135855 PMCID: PMC12004965 DOI: 10.1128/jb.00116-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/01/2024] [Indexed: 03/27/2025] Open
Abstract
Staphylococcus aureus asymptomatically colonizes the nasal cavity and pharynx of up to 60% of the human population and, as an opportunistic pathogen, can breach its normal habitat, resulting in life-threatening infections. S. aureus infections are of additional concern for populations with impaired immune function such as those with cystic fibrosis (CF) or chronic granulomatous disease. Multi-drug resistance is increasingly common in S. aureus infections, creating an urgent need for new antimicrobials or compounds that improve efficacy of currently available antibiotics. S. aureus biofilms, such as those found in the lungs of people with CF and in soft tissue infections, are notoriously recalcitrant to antimicrobial treatment due to the characteristic metabolic differences associated with a sessile mode of growth. In this work, we show that another CF pathogen, Burkholderia cenocepacia, produces one or more secreted compounds that can prevent S. aureus biofilm formation and inhibit existing S. aureus biofilms. The B. cenocepacia-mediated antagonistic activity is restricted to S. aureus species and perhaps some other staphylococci; however, this inhibition does not necessarily extend to other Gram-positive species. This inhibitory activity is due to death of S. aureus through a contact-independent mechanism, potentially mediated through the siderophore pyochelin and perhaps additional compounds. This works paves the way to better understanding of interactions between these two bacterial pathogens.IMPORTANCEStaphylococcus aureus is a major nosocomial pathogen responsible for infecting thousands of people each year. Some strains are becoming increasingly resistant to antimicrobials, and consequently new treatments must be sought. This paper describes the characterization of one or more compounds capable of inhibiting S. aureus biofilm formation and may potentially lead to development of a new therapeutic.
Collapse
Affiliation(s)
- Tiffany J. Brandt
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Hayden Skaggs
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Thomas Hundley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
2
|
Pompilio A, Lupetti V, Puca V, Di Bonaventura G. Repurposing High-Throughput Screening Reveals Unconventional Drugs with Antimicrobial and Antibiofilm Potential Against Methicillin-Resistant Staphylococcus aureus from a Cystic Fibrosis Patient. Antibiotics (Basel) 2025; 14:402. [PMID: 40298549 PMCID: PMC12024424 DOI: 10.3390/antibiotics14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Antibiotic therapy faces challenges from rising acquired and biofilm-related antibiotic resistance rates. High resistance levels to commonly used antibiotics have been observed in methicillin-resistant Staphylococcus aureus (MRSA) strains among cystic fibrosis (CF) patients, indicating an urgent need for new antibacterial agents. This study aimed to identify potential novel therapeutics with antibacterial and antibiofilm activities against an MRSA CF strain by screening, for the first time, the Drug Repurposing Compound Library (MedChem Express). Methods/Results: Among the 3386 compounds, a high-throughput screening-based spectrophotometric approach identified 2439 (72%), 654 (19.3%), and 426 (12.6%) drugs active against planktonic cells, biofilm formation, and preformed biofilm, respectively, although to different extents. The most active hits were 193 (5.7%), against planktonic cells, causing a 100% growth inhibition; 5 (0.14%), with excellent activity against biofilm formation (i.e., reduction ≥ 90%); and 4, showing high activity (i.e., 60% ≤ biofilm reduction < 90%) against preformed biofilms. The potential hits belonged to several primary research areas, with "cancer" being the most prevalent. After performing a literature review to identify other, already published biological properties that could be relevant to the CF lung environment (i.e., activity against other CF pathogens, and anti-inflammatory and anti-virulence potential), the most interesting hits were the following: 5-(N,N-Hexamethylene)-amiloride (diuretic), Toremifene (anticancer), Zafirlukast (antiasthmatic), Fenretide (anticancer), and Montelukast (antiasthmatic) against planktonic S. aureus cells; Hemin against biofilm formation; and Heparin, Clemastine (antihistaminic), and Bromfenac (nonsteroidal anti-inflammatory) against established biofilms. Conclusions: These findings warrant further in vitro and in vivo studies to confirm the potential of repurposing these compounds for managing lung infections caused by S. aureus in CF patients.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
| | - Valentina Puca
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Sciò P, Scoffone VC, Parisi A, Bufano M, Caneva M, Trespidi G, Irudal S, Barbieri G, Cariani L, Orena BS, Daccò V, Imperi F, Buroni S, Coluccia A. Identification of a New FtsZ Inhibitor by Virtual Screening, Mechanistic Insights, and Structure-Activity Relationship Analyses. ACS Infect Dis 2025; 11:998-1007. [PMID: 40100965 PMCID: PMC11998009 DOI: 10.1021/acsinfecdis.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Antimicrobial resistance (AMR) poses a major threat to human health globally. Approximately 5 million deaths were attributed to AMR in 2019, and this figure is predicted to worsen, reaching 10 million deaths by 2050. In the search for new compounds that can tackle AMR, FtsZ inhibitors represent a valuable option. In the present study, a structure-based virtual screening is reported, which led to the identification of derivative C11 endowed with an excellent minimum inhibitory concentration value of 2 μg/mL against Staphylococcus aureus. Biochemical assays clarified that compound C11 targets FtsZ by inhibiting its polymerization process. C11 also showed notable antimicrobial activity against S. aureus cystic fibrosis isolates and methicillin-resistant S. aureus strains. Derivative C11 did not show cytotoxicity, while it had a synergistic effect with methicillin. C11 also showed increased survival in the Galleria mellonella infection model. Lastly, structure-activity relationship and binding mode analyses were reported.
Collapse
Affiliation(s)
- Pietro Sciò
- Department
of Drug Chemistry and Technologies Laboratory Affiliated with the
Institute Pasteur Italy − Cenci Bolognetti Foundation, Sapienza University of Rome, Rome 00185, Italy
| | - Viola Camilla Scoffone
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Anastasia Parisi
- Department
of Drug Chemistry and Technologies Laboratory Affiliated with the
Institute Pasteur Italy − Cenci Bolognetti Foundation, Sapienza University of Rome, Rome 00185, Italy
| | - Marianna Bufano
- Department
of Drug Chemistry and Technologies Laboratory Affiliated with the
Institute Pasteur Italy − Cenci Bolognetti Foundation, Sapienza University of Rome, Rome 00185, Italy
| | - Martina Caneva
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Gabriele Trespidi
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Samuele Irudal
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Giulia Barbieri
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Lisa Cariani
- SC Microbiology
and Virology, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Beatrice Silvia Orena
- SC Microbiology
and Virology, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Valeria Daccò
- Pediatric
Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Francesco Imperi
- Department
of Science, University of Roma Tre, Rome 00154, Italy
| | - Silvia Buroni
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Antonio Coluccia
- Department
of Drug Chemistry and Technologies Laboratory Affiliated with the
Institute Pasteur Italy − Cenci Bolognetti Foundation, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
4
|
Payamifard M, Nemattalab M, Rezaie Shirmard L, Hesari Z. SLN and chitosan nano-delivery systems for antibacterial effect of black seed ( Nigella sativa) oil against S. aureus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:991-1002. [PMID: 39033513 DOI: 10.1080/09603123.2024.2378103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Staphylococcus aureus with current universal importance represents a main carrier of emerging antimicrobial resistance determinatives of global health concerns that have developed drug resistance mechanisms to the various available antibiotics. On the other hand, due to the antimicrobial potential of Nigella Sativa oil (NSO), it was hypothesized that incorporation of nano-carriers (NS-SLN and NS-chitosan (CH) nanoparticles) can enhance its antibacterial effects. This study evaluated the physico-chemical and antibacterial characteristics of NS-SLN and NS-CH. TEM images revealed a round shape with clear edges for both nanoparticles, and the average sizes were reported to be 196.4 and 446.6 nm for NS-SLN and NS-CH, respectively. The zeta potential and encapsulation efficiency were -28.9 and 59.4 mV and 73.22% and 88% for NS-SLN and NS-CH, respectively. The Minimum Inhibitory Concentrations for NSO, NS-SLN, and NS-CH against S. aureus were 480, 200, and 80 µg/mL, respectively. The results confirm significantly stronger antibacterial influences of NSO when loaded into chitosan nanoparticles as a potential candidate for nano-delivery of antimicrobial agents.
Collapse
Affiliation(s)
| | - Mehran Nemattalab
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Hesari
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Jouault A, Jeguirim I, Kaddour IBH, Touqui L. Assessment of the efficacy of an antimicrobial peptide in the context of cystic fibrosis airways. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100367. [PMID: 40129463 PMCID: PMC11931299 DOI: 10.1016/j.crmicr.2025.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Antimicrobial peptides (AMPs) offer a promising alternative to control airway infections with multi-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), which commonly infects patients with cystic fibrosis (CF). However, the behavior of AMPs in the CF context has yet to be fully elucidated. CF airways produce large amounts of proteases and viscous mucus (sputum), which may affect the efficacy of AMPs. The present work aimed to determine whether CF conditions affect the bactericidal efficacy of CAMA, a promising AMP known to kill clinical MRSA strains efficiently. Using a killing assay, we quantified CAMA bactericidal activity on a CF clinical MRSA strain in the presence of several compounds of CF airways, including sputum and bronchial epithelial cells (BECs). Our results indicate that CF sputum impairs the bactericidal efficacy of CAMA. Similar results were observed when CAMA was incubated with an artificial sputum medium (ASM). When used separately, sputum components (DNA, lipids, and mucins) reproduced the inhibitory effects of ASM. Additionally, the bactericidal efficacy of CAMA was also slightly altered when planktonic S. aureus strains were co-cultured with CF BECs. However, CAMA was not active against S. aureus cultured on BEC in biofilm mode, characteristic of chronic infections in CF patients. These findings suggest that although CAMA represents a promising tool to treat MRSA strains, the CF environment may impair the efficacy of this AMP. Identifying strategies to protect AMPs from the deleterious effects of CF sputum is a key priority.
Collapse
Affiliation(s)
- Albane Jouault
- Institut Pasteur, Université de Paris Cité, Mucoviscidose et Bronchopathies Chroniques, Paris, France
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Inès Jeguirim
- Institut Pasteur, Université de Paris Cité, Mucoviscidose et Bronchopathies Chroniques, Paris, France
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Inès Ben Hadj Kaddour
- Institut Pasteur, Université de Paris Cité, Mucoviscidose et Bronchopathies Chroniques, Paris, France
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Lhousseine Touqui
- Institut Pasteur, Université de Paris Cité, Mucoviscidose et Bronchopathies Chroniques, Paris, France
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| |
Collapse
|
6
|
Dhanda G, Singh H, Gupta A, Abdul Mohid S, Biswas K, Mukherjee R, Mukherjee S, Bhunia A, Nair NN, Haldar J. Dual-Functional Antibiotic Adjuvant Displays Potency against Complicated Gram-Negative Bacterial Infections and Exhibits Immunomodulatory Properties. ACS CENTRAL SCIENCE 2025; 11:279-293. [PMID: 40028349 PMCID: PMC11868958 DOI: 10.1021/acscentsci.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
The treatment of Gram-negative bacterial infections is challenged by antibiotic resistance and complicated forms of infection like persistence, multispecies biofilms, intracellular infection, as well as infection-associated hyperinflammation and sepsis. To overcome these challenges, a dual-functional antibiotic adjuvant has been developed as a novel strategy to target complicated forms of bacterial infection and exhibit immunomodulatory properties. The lead adjuvant, D-LBDiphe showed multimodal mechanisms of action like weak outer membrane permeabilization, weak membrane depolarization, and inhibition of efflux machinery, guided primarily by hydrogen bonding and electrostatic interactions, along with weak van der Waals forces. D-LBDiphe potentiated antibiotics up to ∼4100-fold, targeted phenotypic forms of antibiotic tolerance, and revitalized antibiotics against topical and systemic infections of P. aeruginosa in mice. The aromatic moiety in D-LBDiphe was instrumental for interaction with lipopolysaccharide (LPS) micelles, and this interaction was the driving factor in reducing pro-inflammatory cytokines by 61.8-79% in mice challenged with LPS. Such multifarious properties of a weak-membrane perturbing, nonactive and nontoxic adjuvant have been discussed for the first time, supported by detailed mechanistic understanding and elucidation of structure-guided properties. This work expands the scope of antibiotic adjuvants and validates them as a promising approach for treatment of complicated bacterial infections and inflammation.
Collapse
Affiliation(s)
- Geetika Dhanda
- Antimicrobial
Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Himani Singh
- Antimicrobial
Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Abhinav Gupta
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| | - Sk Abdul Mohid
- Department
of Chemical Sciences, Bose Institute, Kolkata 700091, India
| | - Karishma Biswas
- Department
of Chemical Sciences, Bose Institute, Kolkata 700091, India
| | - Riya Mukherjee
- Antimicrobial
Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Smriti Mukherjee
- Antimicrobial
Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Anirban Bhunia
- Department
of Chemical Sciences, Bose Institute, Kolkata 700091, India
| | - Nisanth N. Nair
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
- School
of Advanced Materials, Jawaharlal Nehru
Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
7
|
Jomehzadeh N, Emrani SS. Assessment of biofilm formation, antibiotic resistance patterns, and the prevalence of adhesion-related genes in clinical Staphylococcus aureus isolates. Heliyon 2025; 11:e41537. [PMID: 39850422 PMCID: PMC11755045 DOI: 10.1016/j.heliyon.2024.e41537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Background This study aimed to evaluate the biofilm formation abilities of clinical Staphylococcus aureus strains, assess their antibiotic susceptibility patterns, and identify the prevalence of adhesion-associated genes. Methodology In this study, a total of 60 S. aureus strains were collected from urine, pus, wounds, blood, body fluid, and sputum in health centers affiliated with Abadan University of Medical Sciences, Iran. Strains were identified via microbiological methods and polymerase chain reaction (PCR) to target the nuc gene. Antibiotic susceptibility testing (AST) was conducted via the disc diffusion method. Methicillin-resistant S. aureus (MRSA) strains were identified by cefoxitin disc diffusion and PCR targeting the mecA gene. Biofilm formation was assessed via a microtiter plate assay, and the prevalence of adhesion-encoding genes was evaluated via PCR. The data were analyzed in Excel and SPSS via statistical methods, with P-values <0.05 considered significant. Results Using AST, daptomycin and linezolid were the most effective antibiotics (100 % susceptibility rate). According to the results of the cefoxitin disc test, 48.3 % (n = 29/60) of the strains were MRSA. All the MRSA strains harbored the mecA gene. In total, 32 % of the strains were biofilm producers. Moreover, 56.2 %, 28.1 %, and 15.6 % of the strains produced weak, moderate, and strong biofilms, respectively. There were no significant differences between the MRSA and MSSA strains in terms of the association of biofilm formation with antibiotic resistance except for erythromycin (P-value = 0.0087), gentamicin (P-value = 0.0009), and penicillin (P-value = 0.0009). The most prevalent biofilm-encoding genes were icaA (76.7 %), followed by icaD (70 %), clfA (65.0 %), and fnbA (53.3 %). Conclusion This study identified MRSA strains with biofilm-forming abilities that possess adhesion-associated genes. The most prevalent biofilm-encoding gene was icaA. To prevent further spread of these strains, regional preventive measures are needed.
Collapse
Affiliation(s)
- Nabi Jomehzadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sogol Seif Emrani
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
8
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu OK, Oral E. Investigating the Translational Value of Periprosthetic Joint Infection Models to Determine the Risk and Severity of Staphylococcal Biofilms. ACS Infect Dis 2024; 10:4156-4166. [PMID: 39630924 DOI: 10.1021/acsinfecdis.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilms are crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better treatment outcomes. We use in vivo and in vitro implant-associated infection models to demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA, and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to prevent or treat PJI effectively.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Orhun K Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Guliy OI, Evstigneeva SS. Bacterial Communities and Their Role in Bacterial Infections. Front Biosci (Elite Ed) 2024; 16:36. [PMID: 39736004 DOI: 10.31083/j.fbe1604036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 12/31/2024]
Abstract
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
10
|
Principi N, Esposito S. Biofilm Production and Its Implications in Pediatrics. Microorganisms 2024; 12:1522. [PMID: 39203365 PMCID: PMC11356046 DOI: 10.3390/microorganisms12081522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
Biofilms, aggregates of bacteria enclosed in a self-produced matrix, have been implicated in various pediatric respiratory infections, including acute otitis media (AOM), otitis media with effusion (OME), adenoiditis, protracted bacterial bronchitis, and pulmonary exacerbations in cystic fibrosis. These infections are prevalent in children and often associated with biofilm-producing pathogens, leading to recurrent and chronic conditions. Biofilms reduce antibiotic efficacy, contributing to treatment failure and disease persistence. This narrative review discusses biofilm production by respiratory pathogens such as Streptococcus pneumoniae, non-typeable Haemophilus influenzae, Pseudomonas aeruginosa, and Staphylococcus aureus. It examines their mechanisms of biofilm formation, antibiotic resistance, and the challenges they present in clinical treatment. Various antibiofilm strategies have shown promise in vitro and in animal studies, including the use of N-acetylcysteine, enzymes like dispersin B, and agents disrupting quorum sensing and biofilm matrix components. However, their clinical application, particularly in children, remains limited. Traditional treatments for biofilm-associated diseases have not significantly evolved, even with biofilm detection. The transition from experimental findings to clinical practice is complex and requires robust clinical trials and standardized biofilm detection protocols. Addressing biofilms in pediatric respiratory infections is crucial for improving treatment outcomes and managing recurrent and chronic diseases effectively.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
11
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
12
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu O, Oral E. Investigating the translational value of Periprosthetic Joint Infection (PJI) models to determine the risk and severity of Staphylococcal biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591689. [PMID: 38746179 PMCID: PMC11092509 DOI: 10.1101/2024.04.29.591689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilm is crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better outcomes. Here, using in-vivo and in-vitro implant-associated infection models, we demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to effectively prevent or treat PJI.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Orhun Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| |
Collapse
|
13
|
Gourari-Bouzouina K, Boucherit-Otmani Z, Halla N, Seghir A, Baba Ahmed-Kazi Tani ZZ, Boucherit K. Exploring the dynamics of mixed-species biofilms involving Candida spp. and bacteria in cystic fibrosis. Arch Microbiol 2024; 206:255. [PMID: 38734793 DOI: 10.1007/s00203-024-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Cystic fibrosis (CF) is an inherited disease that results from mutations in the gene responsible for the cystic fibrosis transmembrane conductance regulator (CFTR). The airways become clogged with thick, viscous mucus that traps microbes in respiratory tracts, facilitating colonization, inflammation and infection. CF is recognized as a biofilm-associated disease, it is commonly polymicrobial and can develop in biofilms. This review discusses Candida spp. and both Gram-positive and Gram-negative bacterial biofilms that affect the airways and cause pulmonary infections in the CF context, with a particular focus on mixed-species biofilms. In addition, the review explores the intricate interactions between fungal and bacterial species within these biofilms and elucidates the underlying molecular mechanisms that govern their dynamics. Moreover, the review addresses the multifaceted issue of antimicrobial resistance in the context of CF-associated biofilms. By synthesizing current knowledge and research findings, this review aims to provide insights into the pathogenesis of CF-related infections and identify potential therapeutic approaches to manage and combat these complex biofilm-mediated infections.
Collapse
Affiliation(s)
- Karima Gourari-Bouzouina
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Noureddine Halla
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000, Saida, Algeria
| | - Abdelfettah Seghir
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Zahira Zakia Baba Ahmed-Kazi Tani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| |
Collapse
|
14
|
Fahimnia F, Nemattalab M, Hesari Z. Development and characterization of a topical gel, containing lavender (Lavandula angustifolia) oil loaded solid lipid nanoparticles. BMC Complement Med Ther 2024; 24:155. [PMID: 38589838 PMCID: PMC11000301 DOI: 10.1186/s12906-024-04440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Gels loaded with nanocarriers offer interesting ways to create novel therapeutic approaches by fusing the benefits of gel and nanotechnology. Clinical studies indicate that lavender oil (Lav-O) has a positive impact on accelerating wound healing properly based on its antimicrobial and anti-inflammatory effects. Initially Lav-O loaded Solid Lipid Nanoparticles (Lav-SLN) were prepared incorporating cholesterol and lecithin natural lipids and prepared SLNs were characterized. Next, a 3% SLN containing topical gel (Lav-SLN-G) was formulated using Carbopol 940. Both Lav-SLN and Lav-SLN-G were assessed in terms antibacterial effects against S. aureus. Lav-SLNs revealed a particle size of 19.24 nm, zeta potential of -21.6 mv and EE% of 75.46%. Formulated topical gel presented an acceptable pH and texture properties. Minimum Inhibitory/Bactericidal Concentration (MIC/MBC) against S. aureus for LAv-O, Lav-SLN and Lav-SLN-G were 0.12 and 0.24 mgml- 1, 0.05 and 0.19 mgml- 1 and 0.045, 0.09 mgml- 1, respectively. Therefore, SLN can be considered as an antimicrobial potentiating nano-carrier for delivery of Lav-O as an antimicrobial and anti-inflammatory agent in topical gel.
Collapse
Affiliation(s)
- Faeze Fahimnia
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
15
|
Guo Y, Mao Z, Ran F, Sun J, Zhang J, Chai G, Wang J. Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections. Pharmaceutics 2023; 15:2582. [PMID: 38004561 PMCID: PMC10674810 DOI: 10.3390/pharmaceutics15112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Airway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm. This review focuses on recent advances in the development and application of nanoparticulate drug delivery systems for the treatment of biofilm-associated respiratory tract infections, especially addressing the respiratory barriers of concern for biofilm accessibility and the various types of nanoparticles used to combat biofilms. Understanding the obstacles facing pulmonary drug delivery to bacterial biofilms and nanoparticle-based approaches to combatting biofilm may encourage researchers to explore promising treatment modalities for bacterial-biofilm-associated chronic lung infections.
Collapse
Affiliation(s)
- Yutong Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
16
|
Ali A, Zahra A, Kamthan M, Husain FM, Albalawi T, Zubair M, Alatawy R, Abid M, Noorani MS. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023; 11:1934. [PMID: 37630494 PMCID: PMC10459820 DOI: 10.3390/microorganisms11081934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilms are complex communities of microorganisms that grow on surfaces and are embedded in a matrix of extracellular polymeric substances. These are prevalent in various natural and man-made environments, ranging from industrial settings to medical devices, where they can have both positive and negative impacts. This review explores the diverse applications of microbial biofilms, their clinical consequences, and alternative therapies targeting these resilient structures. We have discussed beneficial applications of microbial biofilms, including their role in wastewater treatment, bioremediation, food industries, agriculture, and biotechnology. Additionally, we have highlighted the mechanisms of biofilm formation and clinical consequences of biofilms in the context of human health. We have also focused on the association of biofilms with antibiotic resistance, chronic infections, and medical device-related infections. To overcome these challenges, alternative therapeutic strategies are explored. The review examines the potential of various antimicrobial agents, such as antimicrobial peptides, quorum-sensing inhibitors, phytoextracts, and nanoparticles, in targeting biofilms. Furthermore, we highlight the future directions for research in this area and the potential of phytotherapy for the prevention and treatment of biofilm-related infections in clinical settings.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Andaleeb Zahra
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Mohan Kamthan
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
17
|
Xiang H, Guo R, Liu L, Guo T, Huang Q. MSIF-LNP: microbial and human health association prediction based on matrix factorization noise reduction for similarity fusion and bidirectional linear neighborhood label propagation. Front Microbiol 2023; 14:1216811. [PMID: 37389340 PMCID: PMC10303805 DOI: 10.3389/fmicb.2023.1216811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Studies have shown that microbes are closely related to human health. Clarifying the relationship between microbes and diseases that cause health problems can provide new solutions for the treatment, diagnosis, and prevention of diseases, and provide strong protection for human health. Currently, more and more similarity fusion methods are available to predict potential microbe-disease associations. However, existing methods have noise problems in the process of similarity fusion. To address this issue, we propose a method called MSIF-LNP that can efficiently and accurately identify potential connections between microbes and diseases, and thus clarify the relationship between microbes and human health. This method is based on matrix factorization denoising similarity fusion (MSIF) and bidirectional linear neighborhood propagation (LNP) techniques. First, we use non-linear iterative fusion to obtain a similarity network for microbes and diseases by fusing the initial microbe and disease similarities, and then reduce noise by using matrix factorization. Next, we use the initial microbe-disease association pairs as label information to perform linear neighborhood label propagation on the denoised similarity network of microbes and diseases. This enables us to obtain a score matrix for predicting microbe-disease relationships. We evaluate the predictive performance of MSIF-LNP and seven other advanced methods through 10-fold cross-validation, and the experimental results show that MSIF-LNP outperformed the other seven methods in terms of AUC. In addition, the analysis of Cystic fibrosis and Obesity cases further demonstrate the predictive ability of this method in practical applications.
Collapse
Affiliation(s)
- Hui Xiang
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Rong Guo
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Li Liu
- College of Physical Education, Suzhou University, Suzhou, Anhui, China
| | - Tengjie Guo
- College of Physical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Quan Huang
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Lipke PN, Ragonis-Bachar P. Sticking to the Subject: Multifunctionality in Microbial Adhesins. J Fungi (Basel) 2023; 9:jof9040419. [PMID: 37108873 PMCID: PMC10144551 DOI: 10.3390/jof9040419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial and fungal adhesins mediate microbial aggregation, biofilm formation, and adhesion to host. We divide these proteins into two major classes: professional adhesins and moonlighting adhesins that have a non-adhesive activity that is evolutionarily conserved. A fundamental difference between the two classes is the dissociation rate. Whereas moonlighters, including cytoplasmic enzymes and chaperones, can bind with high affinity, they usually dissociate quickly. Professional adhesins often have unusually long dissociation rates: minutes or hours. Each adhesin has at least three activities: cell surface association, binding to a ligand or adhesive partner protein, and as a microbial surface pattern for host recognition. We briefly discuss Bacillus subtilis TasA, pilin adhesins, gram positive MSCRAMMs, and yeast mating adhesins, lectins and flocculins, and Candida Awp and Als families. For these professional adhesins, multiple activities include binding to diverse ligands and binding partners, assembly into molecular complexes, maintenance of cell wall integrity, signaling for cellular differentiation in biofilms and in mating, surface amyloid formation, and anchorage of moonlighting adhesins. We summarize the structural features that lead to these diverse activities. We conclude that adhesins resemble other proteins with multiple activities, but they have unique structural features to facilitate multifunctionality.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11215, USA
- Correspondence:
| | - Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|