1
|
Büyücek S, Schraps N, Menz A, Lutz F, Chirico V, Viehweger F, Dum D, Schlichter R, Hinsch A, Fraune C, Bernreuther C, Kluth M, Hube-Magg C, Möller K, Reiswich V, Luebke AM, Lebok P, Weidemann S, Sauter G, Lennartz M, Jacobsen F, Clauditz TS, Marx AH, Simon R, Steurer S, Burandt E, Gorbokon N, Minner S, Krech T, Freytag M. Prevalence and clinical significance of Claudin-3 expression in cancer: a tissue microarray study on 14,966 tumor samples. Biomark Res 2024; 12:154. [PMID: 39658782 PMCID: PMC11633013 DOI: 10.1186/s40364-024-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Claudin-3 (CLDN3) participates in the formation of the tight-junctions (TJs) that regulate intercellular permeability. Altered CLDN3 expression has been linked to tumor progression in multiple tumor types. Despite its widespread expression in normal epithelial cells, CLDN3 is considered an attractive drug target candidate, since it may be more accessible in cancer cells than in normal cells due to their less orchestrated cell growth. METHODS To comprehensively determine the prevalence of CLDN3 expression in cancer, a tissue microarray containing 14,966 samples from 133 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULTS CLDN3 immunostaining was observed in 8,479 (68.9%) of 12,314 analyzable tumors, including 11.6% with weak, 6.2% with moderate, and 51.1% with strong positivity. CLDN3 staining was found in 96 of 133 tumor categories, 80 of which contained at least one strongly positive case. CLDN3 positivity was most seen in neuroendocrine neoplasms (92-100%) and in adenocarcinomas (67-100%), tumors of the female genital tract, including various subtypes of ovarian and endometrial carcinoma (up to 100%), as well as different subtypes of breast cancer (95.3-100%). CLDN3 positivity was less common in squamous cell carcinomas (0-43.2%) and mainly absent in melanoma, mesenchymal, and hematolymphatic neoplasms. In clear cell renal cell carcinoma (ccRCC), low CLDN3 was strongly linked to poor ISUP (p < 0.0001), Fuhrman (p < 0.0001), and Thoenes (p < 0.0001) grades, advanced pT category (p < 0.0001), high UICC stage (p = 0.0006) and distant metastasis (p = 0.0011), as well as shortened overall (p = 0.0118) and recurrence-free (p < 0.0001) survival. In papillary RCC (pRCC), low CLDN3 was associated with poor grade (p < 0.05), high pT (p = 0.0273) and distant metastasis (p = 0.0357). In urothelial carcinoma high CLDN3 was linked to high grade (p < 0.0001) and nodal metastasis (p = 0.0111). The level of CLDN3 staining was unrelated to parameters of tumor aggressiveness in pancreatic, gastric, and breast cancer. CONCLUSION In conclusion, our data demonstrate significant levels of CLDN3 expression in many different tumor entities and identify reduced CLDN3 expression as a potential prognostic marker in RCC.
Collapse
Affiliation(s)
- Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Nina Schraps
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany.
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| |
Collapse
|
2
|
Zhao C, Han H, Tian Y, Qu G, Xu Y, Wang Y, Shi L. Identification of genome-wide copy number variation-driven subtypes for the treatment and prognostic prediction of esophageal carcinoma. Heliyon 2024; 10:e38011. [PMID: 39386821 PMCID: PMC11462465 DOI: 10.1016/j.heliyon.2024.e38011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Esophageal carcinoma (ESCA) is a frequently detected gastrointestinal cancer. Copy number variants (CNVs) have a dramatic impact on the screening, diagnosis and prognostic prediction of cancers. However, the mechanism of action of CNVs on ESCA occurrence and progression remains unclear. Methods ESCA samples from The Cancer Genome Atlas (TCGA) were typed by consensus clustering using CNV-associated genes. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to section gene modules closely related to the two clusters, and sub-networks were constructed as hub genes. In addition, seven prognosis-correlated genes were further screened and retained by multivariate Cox regression analysis to develop a prognostic assessment model. The ssGSEA algorithm assessed energy metabolism levels in patients from different clusters and risk groups. Finally, quantitative real-time PCR (qRT-PCR) and live-dead cell staining verified the expression of genes associated with CNV risk scores. Results ESCA was classified into two subtypes based on CNV values. Compared with cluster 1, cluster 2 had significantly higher level of immune score and tumor-associated immune cell infiltration as well as a noticeably better overall survival. The three modules most associated with the two clusters were identified by WGCNA, and a prognostic model with a strong prediction performance was constructed with their genes. Glycolysis, lactate metabolism, fatty acid synthesis, glutathione, methionine, and tryptophan metabolic pathway enrichment scores were remarkably higher in patients in cluster 1 and the high-risk group than in cluster 2 and the low-risk group. Knockdown PIK3C2A promoted ESCA cells apoptosis and inhibited cell vibiality. Conclusion The current research maybe provides new understanding for the pathogenesis of ESCA based on CNV, providing an effective guidance for its clinical diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hui Han
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yushuang Tian
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Guangjin Qu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yingying Xu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lili Shi
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
3
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Arabi TZ, Fawzy NA, Sabbah BN, Ouban A. Claudins in genitourinary tract neoplasms: mechanisms, prognosis, and therapeutic prospects. Front Cell Dev Biol 2023; 11:1308082. [PMID: 38188015 PMCID: PMC10771851 DOI: 10.3389/fcell.2023.1308082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Genitourinary (GU) cancers are among the most prevalent neoplasms in the world, with bladder cancers constituting 3% of global cancer diagnoses. However, several pathogenetic mechanisms remain controversial and unclear. Claudins, for example, have been shown to play a significant role in several cancers of the human body. Their role in GU cancers has not been extensively studied. Aberrant expression of claudins -1, -2, -3, -4, -7, and -11 has been expressed in urothelial cell carcinomas. In prostate cancers, altered levels of claudins -1, -2, -3, -4, and -5 have been reported. Furthermore, the levels of claudins -1, -2, -3, -4, -6, -7, -8, and -10 have been studied in renal cell carcinomas. Specifically, claudins -7 and -8 have proven especially useful in differentiating between chromophobe renal cell carcinomas and oncocytomas. Several of these claudins also correlate with clinicopathologic parameters and prognosis in GU cancers. Although mechanisms underpinning aberrant expression of claudins in GU cancers are unclear, epigenetic changes, tumor necrosis factor-ɑ, and the p63 protein have been implicated. Claudins also provide therapeutic value through tailored immunotherapy via molecular subtyping and providing therapeutic targets, which have shown positive outcomes in preclinical studies. In this review, we aim to summarize the literature describing aberrant expression of claudins in urothelial, prostatic, and renal cell carcinomas. Then, we describe the mechanisms underlying these changes and the therapeutic value of claudins. Understanding the scope of claudins in GU cancers paves the way for several diagnostic, prognostic, and therapeutic innovations.
Collapse
Affiliation(s)
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|