1
|
Yadav K, Nikalje GC. Comprehensive analysis of bioplastics: life cycle assessment, waste management, biodiversity impact, and sustainable mitigation strategies. PeerJ 2024; 12:e18013. [PMID: 39282116 PMCID: PMC11401513 DOI: 10.7717/peerj.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/09/2024] [Indexed: 09/18/2024] Open
Abstract
Bioplastics are emerging as a promising alternative to traditional plastics, driven by the need for more sustainable options. This review article offers an in-depth analysis of the entire life cycle of bioplastics, from raw material cultivation to manufacturing and disposal, with a focus on environmental impacts at each stage. It emphasizes the significance of adopting sustainable agricultural practices and selecting appropriate feedstock to improve environmental outcomes. The review highlights the detrimental effects of unsustainable farming methods, such as pesticide use and deforestation, which can lead to soil erosion, water pollution, habitat destruction, and increased greenhouse gas emissions. To address these challenges, the article advocates for the use of efficient extraction techniques and renewable energy sources, prioritizing environmental considerations throughout the production process. Furthermore, the methods for reducing energy consumption, water usage, and chemical inputs during manufacturing by implementing eco-friendly technologies. It stresses the importance of developing robust disposal systems for biodegradable materials and supports recycling initiatives to minimize the need for new resources. The holistic approach to sustainability, including responsible feedstock cultivation, efficient production practices, and effective end-of-life management. It underscores the need to evaluate the potential of bioplastics to reduce plastic pollution, considering technological advancements, infrastructure development, and increased consumer awareness. Future research should focus on enhancing production sustainability, understanding long-term ecological impacts, and advancing bioplastics technology for better performance and environmental compatibility. This comprehensive analysis of bioplastics' ecological footprint highlights the urgent need for sustainable solutions in plastic production.
Collapse
Affiliation(s)
- Kushi Yadav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ganesh Chandrakant Nikalje
- Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, University of Mumbai, Ulhasnagar, India
| |
Collapse
|
2
|
Dzeikala O, Prochon M, Sedzikowska N. Gelatine Blends Modified with Polysaccharides: A Potential Alternative to Non-Degradable Plastics. Int J Mol Sci 2024; 25:4333. [PMID: 38673918 PMCID: PMC11050030 DOI: 10.3390/ijms25084333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries.
Collapse
Affiliation(s)
| | - Miroslawa Prochon
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (O.D.); (N.S.)
| | | |
Collapse
|
3
|
Metem V, Thonglam J, Juncheed K, Khangkhamano M, Kwanyuang A, Meesane J. Tissue-mimicking composite barrier membranes to prevent abdominal adhesion formation after surgery. J Mech Behav Biomed Mater 2024; 152:106417. [PMID: 38281440 DOI: 10.1016/j.jmbbm.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Postoperative abdominal adhesions often occur after abdominal surgery; barrier membranes which mimic peritoneal tissue can be constructed to prevent abdominal adhesions. To this end, silk fibroin (SF) sheets were coated with polyvinyl alcohol (PVA) and agarose (AGA) at PVA:AGA ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 to create a composite anti-adhesive barrier and allow us to identify a suitable coating ratio. The membranes were characterized in terms of their molecular organization, structure, and morphology using Fourier transform Infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM), respectively. The physical and mechanical properties of the membranes and their biological performance (i.e., fibroblast proliferation and invasion) were tested in vitro. Each membrane showed both smooth and rough surface characteristics. Membranes coated with PVA:AGA at ratios of 100:0, 70:30, 50:50, and 30:70 exhibited more -OH and amide III moieties than those coated with 0:100 PVA:AGA, which consequently affected structural organization, degradation, and fibroblast viability. The 0:100 PVA:AGA-coated degraded the fastest. Barrier membranes coated with 100:0 and 70:30 PVA: AGA demonstrated reduced fibroblast proliferation and attachment. The membrane coated with 70:30 PVA:AGA exhibited a stable appearance, and did not curl under wet conditions. Therefore, SF sheets coated with 70:30 PVA:AGA show promise as anti-adhesive barrier membranes for further development.
Collapse
Affiliation(s)
- Varistha Metem
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Jutakan Thonglam
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Kantida Juncheed
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Matthana Khangkhamano
- Department of Mine and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Atichart Kwanyuang
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
4
|
Zhang Q, Chen J, Guo X, Lei H, Zou R, Huo E, Kong X, Liu W, Wang M, Ma Z, Li B. Mussel-inspired polydopamine-modified biochar microsphere for reinforcing polylactic acid composite films: Emphasizing the achievement of excellent thermal and mechanical properties. Int J Biol Macromol 2024; 260:129567. [PMID: 38246462 DOI: 10.1016/j.ijbiomac.2024.129567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Having poor interfacial compatibility between biochar microsphere (BM) and polylactic acid (PLA) should be responsible for the unbalance of composite film strength and toughness. Elucidating the effect of polydopamine (PDA) on BM and BM/PLA composite films is the ultimate goal of this study based on the mussel bionic principle. It was found that the strong adhesion of PDA on the BM surface was achieved, which improved the surface roughness and thermal stability. Also, PDA modification can facilitate crystallization, increase thermal properties, improve interfacial compatibility, and enhance the tensile properties of BM/PLA composite films. Silane-based PDA modified BM/PLA composite film exhibited the best tensile strength, tensile modulus, and elongation at break with 77.95 MPa, 1.87 GPa, and 7.30%. These noteworthy findings, achieving a simultaneous improvement in PLA strength and toughness, hold promising implications for its sustainability.
Collapse
Affiliation(s)
- Qingfa Zhang
- School of Engineering, Anhui Agricultural University, Hefei 230036, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jianlong Chen
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Xinyuan Guo
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Rongge Zou
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Erguang Huo
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Kong
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Weiwei Liu
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Mingfeng Wang
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zhong Ma
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Bin Li
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Mosquera Rodríguez FS, Quintero Vélez A, Córdoba Urrutia E, Ramírez-Malule H, Mina Hernandez JH. Study of the Degradation of a TPS/PCL/Fique Biocomposite Material in Soil, Compost, and Water. Polymers (Basel) 2023; 15:3952. [PMID: 37836001 PMCID: PMC10575001 DOI: 10.3390/polym15193952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The degradability of the biocomposite produced from a binary mixture of thermoplastic banana starch (TPS) and polycaprolactone (PCL) reinforced with fique fibers (Fs) was evaluated in three different environments (soil, compost, water). An experimental design with two factors (soil and compost) and three levels (5, 10, and 20 cm) was used, with additional tests for a third aqueous environment (water from the lake of the Universidad del Valle) at a depth of 20 cm. The biocomposite was prepared from the implementation of a twin-screw extrusion process of the binary mixture TPS/PCL and fique fibers (54, 36, and 10% composition, respectively), followed by hot compression molding, and after that, generating ASTM D638 type V specimens using a stainless-steel die. The specimens were dried and buried according to the experimental design, for a total experimental time of 90 days, and removing samples every 30 days. After 90 days, all samples showed signs of degradation, where the best results were obtained in the compost at a depth of 20 cm (34 ± 4% mass loss and a decrease in tensile strength of 77.3%, which indicates that the material lost mechanical properties). TPS was the fastest disappearing component and promoted the degradation of the composite material as it disappeared. Finally, the aqueous media presented the lowest degradation results, losing only 20% of its initial mass after 90 days of the experiment, being the least effective environment in which the biocomposite can end up.
Collapse
Affiliation(s)
| | - Alejandro Quintero Vélez
- School of Chemical Engineering, Universidad del Valle, Calle 13 No. 100-00, Cali 760001, Colombia; (F.S.M.R.); (A.Q.V.)
| | - Estivinson Córdoba Urrutia
- Group Investigación en Ciencia Animal y Recursos Agroforestales, Universidad Tecnológica del Chocó, Carrera 22 No. 18B-10, Quibdó 270001, Colombia;
| | - Howard Ramírez-Malule
- School of Chemical Engineering, Universidad del Valle, Calle 13 No. 100-00, Cali 760001, Colombia; (F.S.M.R.); (A.Q.V.)
| | - Jose Herminsul Mina Hernandez
- School of Materials Engineering, Group Materiales Compuestos, Universidad del Valle, Calle 13 No. 100-00, Cali 760001, Colombia
| |
Collapse
|