1
|
Senthil K, Rathinam M, Parashar M, Dokka N, Tyagi S, Mathur V, Sharma S, Gaikwad K, Bhattacharya R, Sreevathsa R. Establishing a CRISPR/Cas9 genome editing framework in pigeonpea (Cajanus cajan L.) by targeting phytoene desaturase (PDS) gene disruption. J Genet Eng Biotechnol 2025; 23:100465. [PMID: 40074438 PMCID: PMC11847732 DOI: 10.1016/j.jgeb.2025.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 03/14/2025]
Abstract
Pigeonpea is an important legume valued for its high nutritional, agricultural, and economic significance in the Asian subcontinent. Despite its potential for high yield, productivity remains stagnant due to several abiotic and biotic stresses. To mitigate these challenges, biotechnological interventions like genome editing offer promising solutions. Towards this, developing a species-specific editing toolkit is crucial for recalcitrant species like pigeonpea. In this study, we established a CRISPR/Cas9 genome editing system targeting the phytoene desaturase (PDS) gene. We developed pigeonpea-compatible vector components, including the CcU6_7.1 promoter and an amenable Cas9 gene driven by the potato ubiquitin promoter, creating a pigeonpea-specific CRISPR/Cas9 binary vector (PP_CRISPR_pCAMBIA2301). The system was validated by Agrobacterium tumefaciens-mediated apical meristem-targeted in planta and in vitro embryonic axis explant transformations, with gene knockout confirmed by albino/bleached phenotypes. Editing efficiencies were 8.80% and 9.16% in the in planta and in vitro transformations respectively. While PCR analysis confirmed T-DNA integration, sequence analysis identified PDS gene mutations. Stability of the phenotype was demonstrated in T1 generation plants of in planta transformation-developed mutants. This system may support functional genomics studies and trait improvement in pigeonpea and other legumes.
Collapse
Affiliation(s)
- Kameshwaran Senthil
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Manisha Parashar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Narasimham Dokka
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Vandana Mathur
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | | | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India.
| |
Collapse
|
2
|
Dokka N, Tyagi S, Ramkumar MK, Rathinam M, Senthil K, Sreevathsa R. Genome-wide identification and characterization of DIRIGENT gene family (CcDIR) in pigeonpea (Cajanus cajan L.) provide insights on their spatial expression pattern and relevance to stress response. Gene 2024; 914:148417. [PMID: 38555003 DOI: 10.1016/j.gene.2024.148417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
This study is a thorough characterization of pigeonpea dirigent gene (CcDIR) family, an important component of the lignin biosynthesis pathway. Genome-wide analysis identified 25 CcDIR genes followed by a range of analytical approaches employed to unravel their structural and functional characteristics. Structural examination revealed a classic single exon and no intron arrangement in CcDIRs contributing to our understanding on evolutionary dynamics. Phylogenetic analysis elucidated evolutionary relationships among CcDIR genes with six DIR sub-families, while motif distribution analysis displayed and highlighted ten conserved protein motifs in CcDIRs. Promoter analyses of all the dirigent genes detected 18 stress responsive cis-acting elements offering insights into transcriptional regulation. While spatial expression analyses across six plant tissues showed preferential expression of CcDIR genes, exposure to salt (CcDIR2 and CcDIR9) and herbivory (CcDIR1, CcDIR2, CcDIR3 and CcDIR11), demonstrated potential roles of specific DIRs in plant defense. Interestingly, increased gene expression during herbivory, also correlated with increased lignin content authenticating the specific response. Furthermore, exogenous application of stress hormones, SA and MeJA on leaves significantly induced the expression of CcDIRs that responded to herbivory. Taken together, these findings contribute to a comprehensive understanding of CcDIR genes impacting development and stress response in the important legume pigeonpea.
Collapse
Affiliation(s)
- Narasimham Dokka
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - M K Ramkumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Kameshwaran Senthil
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
3
|
Zhao Y, Sun T, Liu J, Zhang R, Yu Y, Zhou G, Liu J, Gao B. The Key Role of Plant Hormone Signaling Transduction and Flavonoid Biosynthesis Pathways in the Response of Chinese Pine ( Pinus tabuliformis) to Feeding Stimulation by Pine Caterpillar ( Dendrolimus tabulaeformis). Int J Mol Sci 2024; 25:6354. [PMID: 38928063 PMCID: PMC11203464 DOI: 10.3390/ijms25126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In nature, plants have developed a series of resistance mechanisms to face various external stresses. As understanding of the molecular mechanisms underlying plant resistance continues to deepen, exploring endogenous resistance in plants has become a hot topic in this field. Despite the multitude of studies on plant-induced resistance, how plants respond to stress under natural conditions remains relatively unclear. To address this gap, we investigated Chinese pine (Pinus tabuliformis) using pine caterpillar (Dendrolimus tabulaeformis) under natural conditions. Healthy Chinese pine trees, approximately 10 years old, were selected for studying induced resistance in Huangtuliangzi Forestry, Pingquan City, Chengde City, Hebei Province, China. Pine needles were collected at 2 h and 8 h after feeding stimulation (FS) via 10 pine caterpillars and leaf clipping control (LCC), to simulate mechanical damage caused by insect chewing for the quantification of plant hormones and transcriptome and metabolome assays. The results show that the different modes of treatments significantly influence the contents of JA and SA in time following treatment. Three types of differentially accumulated metabolites (DAMs) were found to be involved in the initial response, namely phenolic acids, lipids, and flavonoids. Weighted gene co-expression network analysis indicated that 722 differentially expressed genes (DEGs) are positively related to feeding stimulation and the specific enriched pathways are plant hormone signal transduction and flavonoid biosynthesis, among others. Two TIFY transcription factors (PtTIFY54 and PtTIFY22) and a MYB transcription factor (PtMYB26) were found to be involved in the interaction between plant hormones, mainly in the context of JA signal transduction and flavonoid biosynthesis. The results of this study provide an insight into how JA activates, serving as a reference for understanding the molecular mechanisms of resistance formation in conifers responding to mandibulate insects.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Tianhua Sun
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Jie Liu
- College of Agronomy, Hebei Agricultural University, Baoding 071000, China;
| | - Ruibo Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Yongjie Yu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Guona Zhou
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Junxia Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Baojia Gao
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| |
Collapse
|
4
|
Barbero F, Maffei ME. Recent Advances in Plant-Insect Interactions. Int J Mol Sci 2023; 24:11338. [PMID: 37511097 PMCID: PMC10379450 DOI: 10.3390/ijms241411338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Plant-insect interaction is a fast-developing research field that continues to increase the interest of numerous scientists, many of whom come from heterogeneous backgrounds [...].
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13-1023 Turin, Italy
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
5
|
Dash PK, Gupta P, Sreevathsa R, Pradhan SK, Sanjay TD, Mohanty MR, Roul PK, Singh NK, Rai R. Phylogenomic Analysis of micro-RNA Involved in Juvenile to Flowering-Stage Transition in Photophilic Rice and Its Sister Species. Cells 2023; 12:1370. [PMID: 37408207 DOI: 10.3390/cells12101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Vegetative to reproductive phase transition in phototropic plants is an important developmental process and is sequentially mediated by the expression of micro-RNA MIR172. To obtain insight into the evolution, adaptation, and function of MIR172 in photophilic rice and its wild relatives, we analyzed the genescape of a 100 kb segment harboring MIR172 homologs from 11 genomes. The expression analysis of MIR172 revealed its incremental accumulation from the 2-leaf to 10-leaf stage, with maximum expression coinciding with the flag-leaf stage in rice. Nonetheless, the microsynteny analysis of MIR172s revealed collinearity within the genus Oryza, but a loss of synteny was observed in (i) MIR172A in O. barthii (AA) and O. glaberima (AA); (ii) MIR172B in O. brachyantha (FF); and (iii) MIR172C in O. punctata (BB). Phylogenetic analysis of precursor sequences/region of MIR172 revealed a distinct tri-modal clade of evolution. The genomic information generated in this investigation through comparative analysis of MIRNA, suggests mature MIR172s to have evolved in a disruptive and conservative mode amongst all Oryza species with a common origin of descent. Further, the phylogenomic delineation provided an insight into the adaptation and molecular evolution of MIR172 to changing environmental conditions (biotic and abiotic) of phototropic rice through natural selection and the opportunity to harness untapped genomic regions from rice wild relatives (RWR).
Collapse
Affiliation(s)
- Prasanta K Dash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Payal Gupta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | | | | | - Mihir Ranjan Mohanty
- Department of Genetics & Plant Breeding (RRTTS, Jeypore), Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Pravat K Roul
- Department of Genetics & Plant Breeding (RRTTS, Jeypore), Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rhitu Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
6
|
Dash PK, Rai R, Pradhan SK, Shivaraj SM, Deshmukh R, Sreevathsa R, Singh NK. Drought and Oxidative Stress in Flax ( Linum usitatissimum L.) Entails Harnessing Non-Canonical Reference Gene for Precise Quantification of qRT-PCR Gene Expression. Antioxidants (Basel) 2023; 12:antiox12040950. [PMID: 37107326 PMCID: PMC10136167 DOI: 10.3390/antiox12040950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Flax (Linum usitatissimum L.) is a self-pollinating, annual, diploid crop grown for multi-utility purposes for its quality oil, shining bast fiber, and industrial solvent. Being a cool (Rabi) season crop, it is affected by unprecedented climatic changes such as high temperature, drought, and associated oxidative stress that, globally, impede its growth, production, and productivity. To precisely assess the imperative changes that are inflicted by drought and associated oxidative stress, gene expression profiling of predominant drought-responsive genes (AREB, DREB/CBF, and ARR) was carried out by qRT-PCR. Nevertheless, for normalization/quantification of data obtained from qRT-PCR results, a stable reference gene is mandatory. Here, we evaluated a panel of four reference genes (Actin, EF1a, ETIF5A, and UBQ) and assessed their suitability as stable reference genes for the normalization of gene expression data obtained during drought-induced oxidative stress in flax. Taking together, from the canonical expression of the proposed reference genes in three different genotypes, we report that EF1a as a stand-alone and EF1a and ETIF5A in tandem are suitable reference genes to be used for the real-time visualization of cellular impact of drought and oxidative stress on flax.
Collapse
Affiliation(s)
- Prasanta K Dash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rhitu Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Sharat Kumar Pradhan
- ICAR-National Rice Research Institute, Cuttack 753006, India
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110012, India
| | | | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|