1
|
Rubas NC, Peres R, Kunihiro BP, Allan NP, Phankitnirundorn K, Wells RK, McCracken T, Lee RH, Umeda L, Conching A, Juarez R, Maunakea AK. HMGB1 mediates microbiome-immune axis dysregulation underlying reduced neutralization capacity in obesity-related post-acute sequelae of SARS-CoV-2. Sci Rep 2024; 14:355. [PMID: 38172612 PMCID: PMC10764757 DOI: 10.1038/s41598-023-50027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
While obesity is a risk factor for post-acute sequelae of SARS-CoV-2 infection (PASC, "long-COVID"), the mechanism(s) underlying this phenomenon remains poorly understood. To address this gap in knowledge, we performed a 6-week longitudinal study to examine immune activity and gut microbiome dysbiosis in post-acute stage patients recovering from SARS-CoV-2 infection. Self-reported symptom frequencies and blood samples were collected weekly, with plasma assessed by ELISA and Luminex for multiple biomarkers and immune cell profiling. DNA from stool samples were collected at the early stage of recovery for baseline assessments of gut microbial composition and diversity using 16S-based metagenomic sequencing. Multiple regression analyses revealed obesity-related PASC linked to a sustained proinflammatory immune profile and reduced adaptive immunity, corresponding with reduced gut microbial diversity. In particular, enhanced signaling of the high mobility group box 1 (HMGB1) protein was found to associate with this dysregulation, with its upregulated levels in plasma associated with significantly impaired viral neutralization that was exacerbated with obesity. These findings implicate HMGB1 as a candidate biomarker of PASC, with potential applications for risk assessment and targeted therapies.
Collapse
Affiliation(s)
- Noelle C Rubas
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Deparment of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Rafael Peres
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Braden P Kunihiro
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Nina P Allan
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Krit Phankitnirundorn
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Riley K Wells
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Deparment of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Trevor McCracken
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Rosa H Lee
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Lesley Umeda
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Deparment of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Ruben Juarez
- Hawai'i Integrated Analytics, Honolulu, HI, USA
- Deparment of Economics and UHERO, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Alika K Maunakea
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
- Hawai'i Integrated Analytics, Honolulu, HI, USA.
| |
Collapse
|
2
|
Splichalova A, Kindlova Z, Killer J, Neuzil Bunesova V, Vlkova E, Valaskova B, Pechar R, Polakova K, Splichal I. Commensal Bacteria Impact on Intestinal Toll-like Receptor Signaling in Salmonella-Challenged Gnotobiotic Piglets. Pathogens 2023; 12:1293. [PMID: 38003758 PMCID: PMC10675043 DOI: 10.3390/pathogens12111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Gnotobiotic (GN) animals with simple and defined microbiota can help to elucidate host-pathogen interferences. Hysterectomy-derived germ-free (GF) minipigs were associated at 4 and 24 h post-hysterectomy with porcine commensal mucinolytic Bifidobacterium boum RP36 (RP36) strain or non-mucinolytic strain RP37 (RP37) or at 4 h post-hysterectomy with Lactobacillus amylovorus (LA). One-week-old GN minipigs were infected with Salmonella Typhimurium LT2 strain (LT2). We monitored histological changes in the ileum, mRNA expression of Toll-like receptors (TLRs) 2, 4, and 9 and their related molecules lipopolysaccharide-binding protein (LBP), coreceptors MD-2 and CD14, adaptor proteins MyD88 and TRIF, and receptor for advanced glycation end products (RAGE) in the ileum and colon. LT2 significantly induced expression of TLR2, TLR4, MyD88, LBP, MD-2, and CD14 in the ileum and TLR4, MyD88, TRIF, LBP, and CD14 in the colon. The LT2 infection also significantly increased plasmatic levels of inflammatory markers interleukin (IL)-6 and IL-12/23p40. The previous colonization with RP37 alleviated damage of the ileum caused by the Salmonella infection, and RP37 and LA downregulated plasmatic levels of IL-6. A defined oligo-microbiota composed of bacterial species with selected properties should probably be more effective in downregulating inflammatory response than single bacteria.
Collapse
Affiliation(s)
- Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Zdislava Kindlova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vera Neuzil Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
| | - Barbora Valaskova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Radko Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
- Department of Research, Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Katerina Polakova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| |
Collapse
|