1
|
Chambial P, Thakur N, Bhukya PL, Subbaiyan A, Kumar U. Frontiers in superbug management: innovating approaches to combat antimicrobial resistance. Arch Microbiol 2025; 207:60. [PMID: 39953143 DOI: 10.1007/s00203-025-04262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Anti-microbial resistance (AMR) is a global health issue causing significant mortality and economic burden. Pharmaceutical companies' discontinuation of research hinders new agents, while MDR pathogens or "superbugs" worsen the problem. Superbugs pose a threat to common infections and medical procedures, exacerbated by limited antibiotic development and rapid antibiotic resistance. The rising tide of antimicrobial resistance threatens to undermine progress in controlling infectious diseases. This review examines the global proliferation of AMR, its underlying mechanisms, and contributing factors. The study explores various methodologies, emphasizing the significance of precise and timely identification of resistant strains. We discuss recent advancements in CRISPR/Cas9, nanoparticle technology, light-based techniques, and AI-powered antibiogram analysis for combating AMR. Traditional methods often fail to effectively combat multidrug-resistant bacteria, as CRISPR-Cas9 technology offers a more effective approach by cutting specific DNA sequences, precision targeting and genome editing. AI-based smartphone applications for antibiogram analysis in resource-limited settings face challenges like internet connectivity, device compatibility, data quality, energy consumption, and algorithmic limitations. Additionally, light-based antimicrobial techniques are increasingly being used to effectively kill antibiotic-resistant microbial species and treat localized infections. This review provides an in-depth overview of AMR covering epidemiology, evolution, mechanisms, infection prevention, control measures, antibiotic access, stewardship, surveillance, challenges and emerging non-antibiotic therapeutic approaches.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab, 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh, 175001, India.
| | - Prudhvi Lal Bhukya
- Rodent Experimentation Facility, ICMR-National Animal Facility Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, 500101, India
| | - Anbazhagan Subbaiyan
- Rodent Experimentation Facility, ICMR-National Animal Facility Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, 500101, India
| | - Umesh Kumar
- Department of Biosciences, IMS Ghaziabad University Courses Campus, NH-09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India.
| |
Collapse
|
2
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2025; 39:138-161. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
3
|
Moglad E, Elekhnawy E, Alanazi N, Al-Fakhrany OM. Repurposing simvastatin for treatment of Klebsiella pneumoniae infections: in vitro and in vivo study. BIOFOULING 2024; 40:801-815. [PMID: 39390775 DOI: 10.1080/08927014.2024.2413652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Simvastatin had minimum inhibitory concentrations of 32 to 128 µg/mL against Klebsiella pneumoniae isolates and hindered the biofilm-formation ability of 58.54% of the isolates. It considerably diminished the bacterial cell counts in the biofilms as revealed by scanning electron microscope. Also, qRT-PCR revealed a downregulation of the biofilm genes (bcsA, wza, and luxS) by simvastatin in 48.78% of the isolates. Moreover, simvastatin has significantly improved the survival of mice and decreased the burden of bacteria in the infected lungs. Also, the histological architecture was substantially improved in the simvastatin-treated group, as the alveolar sacs and bronchioles appeared normal with minimal collagen fiber deposition. The immunohistochemical studies exposed that the TNF-α, NF-kβ, and COX-2 immunostaining considerably declined in the simvastatin-treated group. Furthermore, ELISA exposed that both IL-1β and IL-6 were considerably diminished in the lungs of the simvastatin-treated group.
Collapse
Affiliation(s)
- Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nuor Alanazi
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | | |
Collapse
|
4
|
Ke Z, Yu J, Liao L, Rao X. Application progress of rosin in food packaging: A review. Int J Biol Macromol 2024; 280:135900. [PMID: 39313057 DOI: 10.1016/j.ijbiomac.2024.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Foodborne illness caused by Gram bacteria is the most important food safety issue worldwide. Food packaging film is a very important means to extend the shelf life of food. It reduces microbial contamination and provides food safety assurance during the sales process. However, the food packaging material is derived from plastic. Most plastics are not only non-degradable but also harmful to human health. Biodegradable natural polymers are an ideal substitute, but their poor mechanical properties, hydrophilicity and weak antibacterial properties limit their applications. Rosin is an oily pine ester in the pine family, which is a natural renewable resource with a wide range of sources. It is widely used in various fields, such as surfactants, adhesives, drug loading, antibacterial, etc. However, there are only a few reports on the application of rosin in food packaging. It is worth noting that the unique hydrogenated phenanthrene ring structure of rosin can enhance the thermal stability, hydrophobicity and antibacterial properties of food packaging. More importantly, rosin has a wide range of sources, good biocompatibility, and can be degraded in nature. These advantages are conducive to the application of rosin in food packaging. However, previous reviews focused on resins, silicone rubbers and surfactants. In this review we will focus on the application of rosin in food packaging.
Collapse
Affiliation(s)
- Zhijun Ke
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Jinxuan Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Lirong Liao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China.
| |
Collapse
|
5
|
Shi L, Zhou X, Qi P. Resin Acid Copper Salt, an Interesting Chemical Pesticide, Controls Rice Bacterial Leaf Blight by Regulating Bacterial Biofilm, Motility, and Extracellular Enzymes. Molecules 2024; 29:4297. [PMID: 39339292 PMCID: PMC11434517 DOI: 10.3390/molecules29184297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial virulence plays an important role in infection. Antibacterial virulence factors are effective for preventing crop bacterial diseases. Resin acid copper salt as an effective inhibitor exhibited excellent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity with an EC50 of 50.0 μg mL-1. Resin acid copper salt (RACS) can reduce extracellular polysaccharides' (EPS's) biosynthesis by down-regulating gumB relative expression. RACS can also effectively inhibit the bio-mass of Xoo biofilm. It can reduce the activity of Xoo extracellular amylase at a concentration of 100 μg mL-1. Meanwhile, the results of virtual computing suggested that RACS is an enzyme inhibitor. RACS displayed good curative activity with a control effect of 38.5%. Furthermore, the result of the phytotoxicity assessment revealed that RACS exhibited slight toxicity compared with the control at a concentration of 200 μg mL-1. The curative effect was increased to 45.0% using an additional antimicrobial agent like orange peel essential oil. RACS markedly inhibited bacterial pathogenicity at a concentration of 100 μg mL-1 in vivo.
Collapse
Affiliation(s)
- Lihong Shi
- Guizhou Province Engineering Research Center of Medical Resourceful Healthcare Products, College of Pharmacy, Guiyang Healthcare Vocational University, Guiyang 550081, China;
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Puying Qi
- National Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Emirdağ S, Ulusoy NG, Aksel M. Design, Synthesis and Biological Evaluation of Novel Gypsogenin Derivatives as Potential Anticancer and Antimicrobial Agents. Chem Biodivers 2024; 21:e202400471. [PMID: 38594210 DOI: 10.1002/cbdv.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Natural compounds are important sources for the treatment of chronic disorders such as cancer and microbial infectious disorders. In this research, Gypsogenin and its derivatives (2 a-2 f) have been tested against different cancer cell lines (MCF-7, HeLa, Jurkat and K562 cell lines) and further analyzed for cell proliferation, cell death type, and for act of the mechanism. Cell proliferation was determined by the MTT method and cell death types were analyzed with HO/PI staining. Fibroblast Growth Factor 1 (FGF-1), Interleukin 1 (IL-1), Interleukin 6 (IL-6), and Tumor Necrosis Factor Alpha (TNF-α), key players in breast cancer development and progression, were determined by Elisa kits. Results showed that compound 2 e inhibited the MCF-7 cell line proliferation with an IC50 value of 0.66±0.17 μM with 93.38 % apoptosis rate. Compound 2 e also decreased FGF-1, IL-1, IL-6, and TNF-α levels. Molecular docking studies performed in the binding site of FGFR-1 indicated that compound 2 e formed key hydrogen bonding with Arg627 and Asn568. Besides, compounds 2 a-2 f were evaluated for their antimicrobial activities against gram-negative and gram-positive bacteria and C. albicans via the microdilution method. Overall, compound 2 e stands out as a potential anticancer agent for future studies.
Collapse
Affiliation(s)
- Safiye Emirdağ
- Faculty of Science Dean's Department of Chemistry, Ege University, 35040, İzmir, Turkey
| | - Nafia Gökçe Ulusoy
- Faculty of Science Dean's Department of Chemistry, Ege University, 35040, İzmir, Turkey
| | - Mehran Aksel
- Department of Biophysics, Faculty of Medicine, Aydın Adnan Menderes University, 09010, Aydin, Turkey
| |
Collapse
|
7
|
Wu Y, Huang L, Ma X, Zhou X, Li Q, Li F. Design, synthesis, and antiproliferative evaluation of novel dehydroabietic acid-1,2,3-triazole-oxazolidinone hybrids. RSC Med Chem 2024; 15:561-571. [PMID: 38389893 PMCID: PMC10880940 DOI: 10.1039/d3md00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024] Open
Abstract
A series of novel dehydroabietic acid derivatives containing both 1,2,3-triazole and oxazolidinone 4a-4t have been synthesized and their antiproliferative activity in vitro against HeLa, HepG2, MGC-803 and T-24 cell lines evaluated. Most of them displayed cell proliferation inhibition on four tested human malignant tumour cell lines to some degree. Among them, compound 4p exhibited promising cytotoxicity with IC50 values ranging from 3.18 to 25.31 μM and weak cytotoxicity toward normal cells. The mechanism of action of 4p was then studied using flow cytometry, Hoechst 33258 staining, ROS generation assay, and JC-1 mitochondrial membrane potential staining, which illustrated that compound 4p induced apoptosis, arrested mitotic process at the G1 phase of the cell cycle, reduced the mitochondrial membrane potential, and increased intracellular ROS levels. In summary, the introduction of an oxazolidinone group via a "1,2,3-triazole" linker significantly improved the antitumor activity of dehydroabietic acid, and deserves to be further investigated.
Collapse
Affiliation(s)
- Yaju Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Lin Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xianli Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xiaoqun Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Qian Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fangyao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| |
Collapse
|
8
|
Ali A, Zahra A, Kamthan M, Husain FM, Albalawi T, Zubair M, Alatawy R, Abid M, Noorani MS. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023; 11:1934. [PMID: 37630494 PMCID: PMC10459820 DOI: 10.3390/microorganisms11081934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilms are complex communities of microorganisms that grow on surfaces and are embedded in a matrix of extracellular polymeric substances. These are prevalent in various natural and man-made environments, ranging from industrial settings to medical devices, where they can have both positive and negative impacts. This review explores the diverse applications of microbial biofilms, their clinical consequences, and alternative therapies targeting these resilient structures. We have discussed beneficial applications of microbial biofilms, including their role in wastewater treatment, bioremediation, food industries, agriculture, and biotechnology. Additionally, we have highlighted the mechanisms of biofilm formation and clinical consequences of biofilms in the context of human health. We have also focused on the association of biofilms with antibiotic resistance, chronic infections, and medical device-related infections. To overcome these challenges, alternative therapeutic strategies are explored. The review examines the potential of various antimicrobial agents, such as antimicrobial peptides, quorum-sensing inhibitors, phytoextracts, and nanoparticles, in targeting biofilms. Furthermore, we highlight the future directions for research in this area and the potential of phytotherapy for the prevention and treatment of biofilm-related infections in clinical settings.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Andaleeb Zahra
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Mohan Kamthan
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
9
|
Yang Y, Chen K, Wang G, Liu H, Shao L, Zhou X, Liu L, Yang S. Discovery of Novel Pentacyclic Triterpene Acid Amide Derivatives as Excellent Antimicrobial Agents Dependent on Generation of Reactive Oxygen Species. Int J Mol Sci 2023; 24:10566. [PMID: 37445744 DOI: 10.3390/ijms241310566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Developing new agricultural bactericides is a feasible strategy for stopping the increase in the resistance of plant pathogenic bacteria. Some pentacyclic triterpene acid derivatives were elaborately designed and synthesized. In particular, compound A22 exhibited the best antimicrobial activity against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac) with EC50 values of 3.34 and 3.30 mg L-1, respectively. The antimicrobial mechanism showed that the compound A22 induced excessive production and accumulation of reactive oxygen species (ROS) in Xoo cells, leading to a decrease in superoxide dismutase and catalase enzyme activities and an increase in malondialdehyde content. A22 also produced increases in Xoo cell membrane permeability and eventual cell death. In addition, in vivo experiments showed that A22 at 200 mg L-1 exhibited protective activity against rice bacterial blight (50.44%) and citrus canker disease (84.37%). Therefore, this study provides a paradigm for the agricultural application of pentacyclic triterpene acid.
Collapse
Affiliation(s)
- Yihong Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kunlun Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Guangdi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongwu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lihui Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Karunakaran G, Sudha KG, Ali S, Cho EB. Biosynthesis of Nanoparticles from Various Biological Sources and Its Biomedical Applications. Molecules 2023; 28:molecules28114527. [PMID: 37299004 DOI: 10.3390/molecules28114527] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
In the last few decades, the broad scope of nanomedicine has played an important role in the global healthcare industry. Biological acquisition methods to obtain nanoparticles (NPs) offer a low-cost, non-toxic, and environmentally friendly approach. This review shows recent data about several methods for procuring nanoparticles and an exhaustive elucidation of biological agents such as plants, algae, bacteria, fungi, actinomycete, and yeast. When compared to the physical, chemical, and biological approaches for obtaining nanoparticles, the biological approach has significant advantages such as non-toxicity and environmental friendliness, which support their significant use in therapeutic applications. The bio-mediated, procured nanoparticles not only help researchers but also manipulate particles to provide health and safety. In addition, we examined the significant biomedical applications of nanoparticles, such as antibacterial, antifungal, antiviral, anti-inflammatory, antidiabetic, antioxidant, and other medical applications. This review highlights the findings of current research on the bio-mediated acquisition of novel NPs and scrutinizes the various methods proposed to describe them. The bio-mediated synthesis of NPs from plant extracts has several advantages, including bioavailability, environmental friendliness, and low cost. Researchers have sequenced the analysis of the biochemical mechanisms and enzyme reactions of bio-mediated acquisition as well as the determination of the bioactive compounds mediated by nanoparticle acquisition. This review is primarily concerned with collating research from researchers from a variety of disciplines that frequently provides new clarifications to serious problems.
Collapse
Affiliation(s)
- Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Kattakgoundar Govindaraj Sudha
- Department of Biotechnology, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India
| | - Saheb Ali
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
11
|
Stojković D, Petrović J, Carević T, Soković M, Liaras K. Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review. Antibiotics (Basel) 2023; 12:963. [PMID: 37370282 PMCID: PMC10295040 DOI: 10.3390/antibiotics12060963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
This narrative review paper provides an up-to-date overview of the potential of novel synthetic and semisynthetic compounds as antibacterials that target virulence traits in resistant strains. The review focused on research conducted in the last five years and investigated a range of compounds including azoles, indoles, thiophenes, glycopeptides, pleuromutilin derivatives, lactone derivatives, and chalcones. The emergence and spread of antibiotic-resistant bacterial strains is a growing public health concern, and new approaches are urgently needed to combat this threat. One promising approach is to target virulence factors, which are essential for bacterial survival and pathogenesis, but not for bacterial growth. By targeting virulence factors, it may be possible to reduce the severity of bacterial infections without promoting the development of resistance. We discuss the mechanisms of action of the various compounds investigated and their potential as antibacterials. The review highlights the potential of targeting virulence factors as a promising strategy to combat antibiotic resistance and suggests that further research is needed to identify new compounds and optimize their efficacy. The findings of this review suggest that novel synthetic and semisynthetic compounds that target virulence factors have great potential as antibacterials in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (J.P.); (T.C.); (M.S.)
| | - Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (J.P.); (T.C.); (M.S.)
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (J.P.); (T.C.); (M.S.)
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (J.P.); (T.C.); (M.S.)
| | - Konstantinos Liaras
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| |
Collapse
|