1
|
Xu Y, Chen Y, Zhang K, Chen M, Duan R, Ren Y. Investigating the effects of TRPV4 and Ca v1.2 channels in 3D culture for promoting the differentiation of BMSCs at various stages. Exp Cell Res 2025; 447:114515. [PMID: 40073957 DOI: 10.1016/j.yexcr.2025.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.2 calcium ion channels have been reported to play significant roles in the cartilage differentiation of BMSCs. However, there is no study on whether the effects of these two ion channels vary in different periods of BMSC differentiation, especially in 3D culture. In this article, we clarified the role of TRPV4 and Cav1.2 signaling pathways in the early and late stages of BMSCs cartilage differentiation during 3D culture in hyaluronic acid hydrogel with specific mechanical properties. This research can provide new ideas for further accelerating the stimulation of BMSCs cartilage differentiation and formulating cartilage repair strategies in vivo.
Collapse
Affiliation(s)
- Yuanqing Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Yuhang Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Kun Zhang
- Xuzhou Stomatological Hospital, Xuzhou, 221007, China
| | - Minmin Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Rongquan Duan
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Ying Ren
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China; Xuzhou Stomatological Hospital, Xuzhou, 221007, China.
| |
Collapse
|
2
|
Shelest A, Alaburda A, Vaiciuleviciute R, Uzieliene I, Bialaglovyte P, Bernotiene E. The Effect of TGF-β3 and IL-1β on L-Type Voltage-Operated Calcium Channels and Calcium Ion Homeostasis in Osteoarthritic Chondrocytes and Human Bone Marrow-Derived Mesenchymal Stem Cells During Chondrogenesis. Pharmaceutics 2025; 17:343. [PMID: 40143007 PMCID: PMC11945166 DOI: 10.3390/pharmaceutics17030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Transforming growth factor-β (TGF-β) and interleukin 1β (IL-1β) are key regulators of the chondrogenic differentiation, physiology and pathology of cartilage tissue, with TGF-β promoting chondrogenesis and matrix formation, while IL-1β exerts catabolic effects, inhibiting chondrogenesis and contributing to cartilage degradation. Both cytokines alter the intracellular calcium ion (iCa2+) levels; however, the exact pathways are not known. Objectives: This study aimed to evaluate the impact of TGF-β3 and IL-1β on calcium homeostasis in human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and chondrocytes during chondrogenesis. Results: TGF-β3 increased iCa2+ levels in both hBM-MSCs and chondrocytes. Furthermore, TGF-β3 increased the functional activity of L-type voltage-operated calcium channels (L-VOCCs) in hBM-MSCs but not in chondrocytes. TGF-β3 and IL-1β reduced L-VOCCs subunit CaV1.2 (CACNA1C) gene expression in chondrocytes. In hBM-MSCs, TGF-β3 and IL-1β increased SERCA pump (ATP2A2) gene expression, while in chondrocytes, this effect was observed only with TGF-β3. Conclusions: TGF-β3 increases iCa2+ both in osteoarthritic chondrocytes and hBM-MSCs during chondrogenesis. In hBM-MSCs, TGF-β3-mediated elevation in iCa2+ is related to the increased functional activity of L-VOCCs. IL-1β does not change iCa2+ in osteoarthritic chondrocytes and hBM-MSCs; however, it initiates the mechanisms leading to further downregulation of iCa2+ in both types of cells. The differential and cell-specific roles of TGF-β3 and IL-1β in the calcium homeostasis of osteoarthritic chondrocytes and hBM-MSCs during chondrogenesis may provide a new insight into future strategies for cartilage repair and osteoarthritis treatment.
Collapse
Affiliation(s)
- Anastasiia Shelest
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aidas Alaburda
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Paulina Bialaglovyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
- VilniusTech Faculty of Fundamental Sciences, Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
3
|
Cieśla J, Tomsia M. Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration. Histochem Cell Biol 2025; 163:27. [PMID: 39863760 DOI: 10.1007/s00418-025-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA). The review summarizes the most important scientific reports on biology and mechanisms of SC-derived chondrogenesis and sources of SCs for chondrogenic purposes. Additionally, it focuses on the genetic mechanisms, microRNA (miRNA) regulation, and epigenetic processes steering the chondrogenic differentiation of SCs. It also describes the attempts to create functional cartilage with tissue engineering using growth factors and scaffolds. Finally, it presents the challenges that researchers will have to face in the future to effectuate SC differentiation methods into clinical practice for treating cartilage diseases.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
| |
Collapse
|
4
|
Chen Z, Zhou T, Yin Z, Duan P, Zhang Y, Feng Y, Shi R, Xu Y, Pang R, Tan H. Promotion of microfracture-mediated cartilage repair by the intra-articular injection of Mg2. Bone Joint Res 2025; 14:20-32. [PMID: 39819638 PMCID: PMC11737901 DOI: 10.1302/2046-3758.141.bjr-2024-0017.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Aims Magnesium ions (Mg2+) play an important role in promoting cartilage repair in cartilage lesions. However, no research has focused on the role of Mg2+ combined with microfracture (MFX) in hyaline-like cartilage repair mediated by cartilage injury. This study aimed to investigate the beneficial effects of the combination of MFX and Mg2+ in cartilage repair. Methods A total of 60 rabbits were classified into five groups (n = 12 each): sham, MFX, and three different doses of Mg2+ treatment groups (0.05, 0.5, and 5 mol/L). Bone cartilage defects were created in the trochlear groove cartilage of rabbits. MFX surgery was performed after osteochondral defects. Mg2+ was injected into knee joints immediately and two and four weeks after surgery. At six and 12 weeks after surgery, the rabbits were killed. Cartilage damage was detected by gross observation, micro-CT, and histological analysis. The expression levels of related genes were detected by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results The histological results showed that the 0.5 mol/L Mg2+ group had deeper positive staining in haematoxylin-eosin (H&E), safranin O, Alcian blue, and type II collagen staining. The new cartilage coverage in the injury area was more complete, and the regeneration of hyaline cartilage was higher. The RT-qPCR results showed that sirtuin 1/bone morphogenetic protein-2/sex-determining region Y box 9 (SIRT1/BMP-2/SOX-9) and hypoxia-inducible factor 1-alpha (HIF-1α) messenger RNA levels were up-regulated after Mg2+ injection. Conclusion MFX combined with Mg2+ treatment has a positive effect on cartilage repair. The Mg2+ injection dose of 0.5 mol/L is most effective in enhancing microfracture-mediated cartilage repair.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming, China
- Basic Medical Laboratory, People’s Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Tianhua Zhou
- Department of Orthopaedics, People’s Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, China
| | - Zhengbo Yin
- Graduate School, Kunming Medical University, Kunming, China
| | - Peiya Duan
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ying Zhang
- Department of Orthopaedics, People’s Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, China
| | - Yujiao Feng
- Graduate School, Kunming Medical University, Kunming, China
| | - Rongmao Shi
- Department of Orthopaedics, People’s Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, China
| | - Yongqing Xu
- Department of Orthopaedics, People’s Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, China
| | - Rongqing Pang
- Basic Medical Laboratory, People’s Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Hongbo Tan
- Department of Orthopaedics, People’s Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, China
| |
Collapse
|
5
|
Wang S, Xia D, Dou W, Chen A, Xu S. Bioactive Porous Composite Implant Guides Mesenchymal Stem Cell Differentiation and Migration to Accelerate Bone Reconstruction. Int J Nanomedicine 2024; 19:12111-12127. [PMID: 39583325 PMCID: PMC11586122 DOI: 10.2147/ijn.s479893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background Delayed healing and non-healing of bone defects pose significant challenges in clinical practice, with metal materials increasingly recognized for their significance in addressing these issues. Among these materials, Strontium (Sr) and Zinc (Zn) have emerged as promising agents for promoting bone repair. Building upon this insight, this research evaluates the impact of a porous Sr@Zn@SiO2 nanocomposite implant on bone regeneration, aiming to advance the field of bone repair. Methods The preparation of the Sr@Zn@SiO2 composite implant involves various techniques such as roasting, centrifugation, and washing. The material's composition is examined, and its microstructure and element distribution are analyzed using TEM and elemental scanning technology. In vitro experiments entail the isolation and characterization of BMSCs followed by safety assessments of the implant material, evaluation of cell migration capabilities, and relevant proliferation markers. Mechanistically, this study delves into key targets associated with significant changes in the osteogenic process. In vivo experiments involve establishing a rat femur bone defect model, followed by assessment of the osteogenic potential of Sr@Zn@SiO2 using Micro-CT imaging and tissue section staining. Results Through in vivo and in vitro investigations, we validate the osteogenic efficacy of the Sr@Zn@SiO2 composite implant. In vitro analyses demonstrate that porous Sr@Zn@SiO2 nanocomposite materials upregulate BMP-2 expression, leading to the activation of Smad1/5/9 phosphorylation and subsequent activation of downstream osteogenic genes, culminating in BMSCs osteogenic differentiation and bone proliferation. And the migration of BMSCs is closely related to the high expression of CXCL12/CXCR4, which will also provide the conditions for osteogenesis. In vivo, the osteogenic ability of Sr@Zn@SiO2 was also confirmed in rats. Conclusion In our research, the porous Sr@Zn@SiO2 composite implant displays prominent osteogenic effect and promotes the migration and differentiation of BMSCs to promote bone defect healing. This bioactive implant has surgical application potential in the future.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Demeng Xia
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Clinical Medicine, Hainan Health Vocational College, Haikou, 570100, People’s Republic of China
| | - Wenxue Dou
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People’s Republic of China
| | - Aimin Chen
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Shuogui Xu
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
6
|
Butkiene G, Daugelaite AM, Poderys V, Marin R, Steponkiene S, Kazlauske E, Uzieliene I, Daunoravicius D, Jaque D, Rotomskis R, Skripka A, Vetrone F, Karabanovas V. Synergistic Enhancement of Photodynamic Cancer Therapy with Mesenchymal Stem Cells and Theranostic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49092-49103. [PMID: 39252643 PMCID: PMC11420871 DOI: 10.1021/acsami.4c10098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanoparticles engineered to combat cancer and other life-threatening diseases may significantly improve patient outcomes. However, inefficient nanoparticle delivery to tumors limits their use and necessitates the development of complex delivery approaches. Here, we examine this issue by harnessing the tumor-homing abilities of human mesenchymal stem cells (MSCs) to deliver a decoupled theranostic complex of rare earth-doped nanoparticles (dNPs) and photosensitizer chlorin e6 (Ce6) to tumors. We show that both bone-marrow- and skin-derived MSCs can transport the dNP-Ce6 complex inside tumor spheroids, which is challenging to accomplish by passive delivery alone. MSCs deliver the dNP-Ce6 complex across the tumor spheroid, facilitating more effective photodynamic damage and tumor destruction than passively accumulated dNP-Ce6. The dNP-Ce6 complex also provides the built-in ability to monitor the MSC migration without causing undesired phototoxicity, which is essential for maximal and side-effect-free delivery of nanoparticles. Our results demonstrate how MSCs can be used as delivery vehicles for the transportation of the dNP-Ce6 complex, addressing the limitations of passive nanoparticle delivery and providing light-based theranostics.
Collapse
Affiliation(s)
- Greta Butkiene
- Biomedical Physics Laboratory of the National Cancer Institute, P. Baublio St. 3b, Vilnius LT-08406, Lithuania
| | - Aleja Marija Daugelaite
- Biomedical Physics Laboratory of the National Cancer Institute, P. Baublio St. 3b, Vilnius LT-08406, Lithuania
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio g. 21, Vilnius LT-03101, Lithuania
| | - Vilius Poderys
- Biomedical Physics Laboratory of the National Cancer Institute, P. Baublio St. 3b, Vilnius LT-08406, Lithuania
| | - Riccardo Marin
- Nano for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Simona Steponkiene
- Biomedical Physics Laboratory of the National Cancer Institute, P. Baublio St. 3b, Vilnius LT-08406, Lithuania
| | - Evelina Kazlauske
- Biomedical Physics Laboratory of the National Cancer Institute, P. Baublio St. 3b, Vilnius LT-08406, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, Vilnius LT-10223, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, Vilnius LT-08406, Lithuania
| | | | - Daniel Jaque
- Nano for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Nano for Bioimaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid 28034, Spain
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory of the National Cancer Institute, P. Baublio St. 3b, Vilnius LT-08406, Lithuania
- Biophotonics Group, Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 9, Vilnius LT-10222, Lithuania
| | - Artiom Skripka
- Nano for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Fiorenzo Vetrone
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), Université du Québec, Varennes, Québec J3X 1P7, Canada
- Centre Québécois sur les Matériaux Fonctionnels (CQMF)/Quebec Centre for Advanced Materials (QCAM), Montréal, Québec J3X 1P7, Canada
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory of the National Cancer Institute, P. Baublio St. 3b, Vilnius LT-08406, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, Vilnius LT-10223, Lithuania
| |
Collapse
|
7
|
Zahedi Tehrani T, Irani S, Ardeshirylajimi A, Seyedjafari E. Natural based hydrogels promote chondrogenic differentiation of human mesenchymal stem cells. Front Bioeng Biotechnol 2024; 12:1363241. [PMID: 38567084 PMCID: PMC10985146 DOI: 10.3389/fbioe.2024.1363241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Background: The cartilage tissue lacks blood vessels, which is composed of chondrocytes and ECM. Due to this vessel-less structure, it is difficult to repair cartilage tissue damages. One of the new methods to repair cartilage damage is to use tissue engineering. In the present study, it was attempted to simulate a three-dimensional environment similar to the natural ECM of cartilage tissue by using hydrogels made of natural materials, including Chitosan and different ratios of Alginate. Material and methods: Chitosan, alginate and Chitosan/Alginate hydrogels were fabricated. Fourier Transform Infrared, XRD, swelling ratio, porosity measurement and degradation tests were applied to scaffolds characterization. After that, human adipose derived-mesenchymal stem cells (hADMSCs) were cultured on the hydrogels and then their viability and chondrogenic differentiation capacity were studied. Safranin O and Alcian blue staining, immunofluorescence staining and real time RT-PCR were used as analytical methods for chondrogenic differentiation potential evaluation of hADMSCs when cultured on the hydrogels. Results: The highest degradation rate was detected in Chitosan/Alginate (1:0.5) group The scaffold biocompatibility results revealed that the viability of the cells cultured on the hydrogels groups was not significantly different with the cells cultured in the control group. Safranin O staining, Alcian blue staining, immunofluorescence staining and real time PCR results revealed that the chondrogenic differentiation potential of the hADMSCs when grown on the Chitosan/Alginate hydrogel (1:0.5) was significantly higher than those cell grown on the other groups. Conclusion: Taken together, these results suggest that Chitosan/Alginate hydrogel (1:0.5) could be a promising candidate for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Tina Zahedi Tehrani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Jacho D, Yildirim-Ayan E. Mechanome-Guided Strategies in Regenerative Rehabilitation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 29:100516. [PMID: 38586151 PMCID: PMC10993906 DOI: 10.1016/j.cobme.2023.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regenerative Rehabilitation represents a multifaceted approach that merges mechanobiology with therapeutic intervention to harness the body's intrinsic tissue repair and regeneration capacity. This review delves into the intricate interplay between mechanical loading and cellular responses in the context of musculoskeletal tissue healing. It emphasizes the importance of understanding the phases involved in translating mechanical forces into biochemical responses at the cellular level. The review paper also covers the mechanosensitivity of macrophages, fibroblasts, and mesenchymal stem cells, which play a crucial role during regenerative rehabilitation since these cells exhibit unique mechanoresponsiveness during different stages of the tissue healing process. Understanding how mechanical loading amplitude and frequency applied during regenerative rehabilitation influences macrophage polarization, fibroblast-to-myofibroblast transition (FMT), and mesenchymal stem cell differentiation is crucial for developing effective therapies for musculoskeletal tissues. In conclusion, this review underscores the significance of mechanome-guided strategies in regenerative rehabilitation. By exploring the mechanosensitivity of different cell types and their responses to mechanical loading, this field offers promising avenues for accelerating tissue healing and functional recovery, ultimately enhancing the quality of life for individuals with musculoskeletal injuries and degenerative diseases.
Collapse
Affiliation(s)
- Diego Jacho
- Department of Bioengineering, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, USA
| |
Collapse
|
9
|
Uzieliene I, Bironaite D, Miksiunas R, Bagdonas E, Vaiciuleviciute R, Mobasheri A, Bernotiene E. The Effect of CaV1.2 Inhibitor Nifedipine on Chondrogenic Differentiation of Human Bone Marrow or Menstrual Blood-Derived Mesenchymal Stem Cells and Chondrocytes. Int J Mol Sci 2023; 24:ijms24076730. [PMID: 37047701 PMCID: PMC10095444 DOI: 10.3390/ijms24076730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cartilage is an avascular tissue and sensitive to mechanical trauma and/or age-related degenerative processes leading to the development of osteoarthritis (OA). Therefore, it is important to investigate the mesenchymal cell-based chondrogenic regenerating mechanisms and possible their regulation. The aim of this study was to investigate the role of intracellular calcium (iCa2+) and its regulation through voltage-operated calcium channels (VOCC) on chondrogenic differentiation of mesenchymal stem/stromal cells derived from human bone marrow (BMMSCs) and menstrual blood (MenSCs) in comparison to OA chondrocytes. The level of iCa2+ was highest in chondrocytes, whereas iCa2+ store capacity was biggest in MenSCs and they proliferated better as compared to other cells. The level of CaV1.2 channels was also highest in OA chondrocytes than in other cells. CaV1.2 antagonist nifedipine slightly suppressed iCa2+, Cav1.2 and the proliferation of all cells and affected iCa2+ stores, particularly in BMMSCs. The expression of the CaV1.2 gene during 21 days of chondrogenic differentiation was highest in MenSCs, showing the weakest chondrogenic differentiation, which was stimulated by the nifedipine. The best chondrogenic differentiation potential showed BMMSCs (SOX9 and COL2A1 expression); however, purposeful iCa2+ and VOCC regulation by blockers can stimulate a chondrogenic response at least in MenSCs.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
10
|
Neffe AT. Cell-Material Interactions 2022. Int J Mol Sci 2023; 24:ijms24076057. [PMID: 37047029 PMCID: PMC10093964 DOI: 10.3390/ijms24076057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Cell-material interactions are the defining feature of biomaterials, and they are relevant for evaluating material residues and pollutants [...].
Collapse
Affiliation(s)
- Axel T Neffe
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| |
Collapse
|