1
|
Musgrove L, Bhojwani A, Hyde C, Glendinning S, Nocillado J, Russell FD, Ventura T. Transcriptomic Analysis across Crayfish ( Cherax quadricarinatus) Claw Regeneration Reveals Potential Stem Cell Sources for Cultivated Crustacean Meat. Int J Mol Sci 2024; 25:8623. [PMID: 39201309 PMCID: PMC11354258 DOI: 10.3390/ijms25168623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
In the face of rising global demand and unsustainable production methods, cultivated crustacean meat (CCM) is proposed as an alternative means to produce delicious lobster, shrimp, and crab products. Cultivated meat requires starting stem cells that may vary in terms of potency and the propensity to proliferate or differentiate into myogenic (muscle-related) tissues. Recognizing that regenerating limbs are a non-lethal source of tissue and may harbor relevant stem cells, we selected those of the crayfish Cherax quadricarinatus as our model. To investigate stem cell activity, we conducted RNA-Seq analysis across six stages of claw regeneration (four pre-molt and two post-molt stages), along with histology and real-time quantitative PCR (qPCR). Our results showed that while genes related to energy production, muscle hypertrophy, and exoskeletal cuticle synthesis dominated the post-molt stages, growth factor receptors (FGFR, EGFR, TGFR, and BMPR) and those related to stem cell proliferation and potency (Cyclins, CDKs, Wnts, C-Myc, Klf4, Sox2, PCNA, and p53) were upregulated before the molt. Pre-molt upregulation in several genes occurred in two growth peaks; Stages 2 and 4. We therefore propose that pre-molt limb regeneration tissues, particularly those in the larger Stage 4, present a prolific and non-lethal source of stem cells for CCM development.
Collapse
Affiliation(s)
- Lisa Musgrove
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Avani Bhojwani
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Cameron Hyde
- Queensland Cyber Infrastructure Foundation (QCIF) Ltd., The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Josephine Nocillado
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Fraser D. Russell
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Health, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| |
Collapse
|
2
|
Wahl M, Levy T, Ventura T, Sagi A. Monosex Populations of the Giant Freshwater Prawn Macrobrachium rosenbergii-From a Pre-Molecular Start to the Next Generation Era. Int J Mol Sci 2023; 24:17433. [PMID: 38139271 PMCID: PMC10743721 DOI: 10.3390/ijms242417433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Sexual manipulation in the giant freshwater prawn Macrobrachium rosenbergii has proven successful in generating monosex (both all-male and all-female) populations for aquaculture using a crustacean-specific endocrine gland, the androgenic gland (AG), which serves as a key masculinizing factor by producing and secreting an insulin-like AG hormone (IAG). Here, we provide a summary of the advancements from the discovery of the AG and IAG in decapods through to the development of monosex populations in M. rosenbergii. We discuss the broader sexual development pathway, which is highly divergent across decapods, and provide our future perspective on the utility of novel genetic and genomic tools in promoting refined approaches towards monosex biotechnology. Finally, the future potential benefits of deploying monosex prawn populations for environmental management are discussed.
Collapse
Affiliation(s)
- Melody Wahl
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Shao S, Mo N, Yang Y, Cui Z, Bao C. Identifying sex-differential gene expression in the antennal gland of the swimming crab by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101087. [PMID: 37178607 DOI: 10.1016/j.cbd.2023.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The antennal glands (AnGs) are recognized as an important organ that functions in ion regulation and excretion in decapods. Previously, many studies had explored this organ at the biochemical, physiological, and ultrastructural levels but had few molecular resources. In this study, the transcriptomes of the male and female AnGs of Portunus trituberculatus were sequenced using RNA sequencing (RNA-Seq) technology. Genes involved in osmoregulation and organic/inorganic solute transport were identified. This suggests that AnGs might be involved in these physiological functions as versatile organs. A total of 469 differentially expressed genes (DEGs) were further identified between male and female transcriptomes and found to be male-biased. Enrichment analysis showed that females were enriched in amino acid metabolism and males were enriched in nucleic acid metabolism. These results suggested differences in possible metabolic patterns between males and females. Furthermore, two transcription factors related to reproduction, namely AF4/FMR2 family members Lilli (Lilli) and Virilizer (Vir), were identified in DEGs. Lilli was found to be specifically expressed in the male AnGs, whereas Vir showed high expression levels in the female AnGs. The expression of up-regulated metabolism and sexual development-related genes in three males and six females was verified by qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our results suggest that although the AnG is a unified somatic tissue composed of individual cells, it still demonstrates distinct sex-specific expression patterns. These results provide foundational knowledge of the function and differences between male and female AnGs in P. trituberculatus.
Collapse
Affiliation(s)
- Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China..
| |
Collapse
|