1
|
Wang X, Xu K, Fu H, Chen Q, Zhao B, Zhao X, Zhou J. Enhancing substrate specificity of microbial transglutaminase for precise nanobody labeling. Synth Syst Biotechnol 2024; 10:185-193. [PMID: 39552758 PMCID: PMC11564792 DOI: 10.1016/j.synbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Streptomyces mobaraenesis transglutaminase (smTG) can be used for site-specific labeling of proteins with chemical groups. Here, we explored the use of modified smTG for the biosynthesis of nanobody-fluorophore conjugates (NFC). smTG catalyzes the conjugation of acyl donors containing glutamine with lysine-containing acceptors, which can lead to non-specific cross-linking. To achieve precise site-specific labeling, we employed molecular docking and virtual mutagenesis to redesign the enzyme's substrate specificity towards the peptide GGGGQR, a non-preferred acyl donor for smTG. Starting with a thermostable and highly active smTG variant (TGm2), we identified that single mutations G250H and Y278E significantly enhanced activity against GGGGQR, increasing it by 41 % and 1.13-fold, respectively. Notably, the Y278E mutation dramatically shifted the enzyme's substrate preference, with the activity ratio against GGGGQR versus the standard substrate CBZ-Gln-Gly rising from 0.05 to 0.93. In case studies, we used nanobodies 1C12 and 7D12 as labeling targets, catalyzing their conjugation with a synthetic fluorophore via smTG variants. Nanobodies fused with GGGGQR were successfully site-specifically labeled by TGm2-Y278E, in contrast to non-specific labeling observed with other variants. These results suggest that engineering smTG for site-specific labeling is a promising approach for the biosynthesis of antibody-drug conjugates.
Collapse
Affiliation(s)
- Xinglong Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Kangjie Xu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Haoran Fu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Qiming Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Beichen Zhao
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Xinyi Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Li Y, Liu T, Lai X, Xie H, Tang H, Wu S, Li Y. Rational design peptide inhibitors of Cyclophilin D as a potential treatment for acute pancreatitis. Medicine (Baltimore) 2023; 102:e36188. [PMID: 38050301 PMCID: PMC10695616 DOI: 10.1097/md.0000000000036188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023] Open
Abstract
Cyclophilin D (CypD) is a mitochondrial matrix peptidyl prolidase that regulates the mitochondrial permeability transition pore. Inhibition of CypD was suggested as a therapeutic strategy for acute pancreatitis. Peptide inhibitors emerged as novel binding ligand for blocking receptor activity. In this study, we present our computational approach for designing peptide inhibitors of CypD. The 3-D structure of random peptides were built, and docked into the active center of CypD using Rosetta script integrated FlexPepDock module. The peptide displayed the lowest binding energy against CypD was further selected for virtual iterative mutation based on virtual mutagenesis and molecular docking. Finally, the top 5 peptides with the lowest binding energy was selected for validating their affinity against CypD using inhibitory assay. We showed 4 out of the selected 5 peptides were capable for blocking the activity of CypD, while WACLQ display the strongest affinity against CypD, which reached 0.28 mM. The binding mechanism between WACLQ and CypD was characterized using molecular dynamics simulation. Here, we proved our approach can be a robust method for screening peptide inhibitors.
Collapse
Affiliation(s)
- Yuehong Li
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Ting Liu
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaoyan Lai
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Huifang Xie
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Heng Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuangchan Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xian, Shanxi Province, China
| | - Yongshun Li
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
3
|
Cui J, Feng Y, Yang T, Wang X, Tang H. Computer-Aided Designing Peptide Inhibitors of Human Hematopoietic Prostaglandin D2 Synthase Combined Molecular Docking and Molecular Dynamics Simulation. Molecules 2023; 28:5933. [PMID: 37570903 PMCID: PMC10421073 DOI: 10.3390/molecules28155933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Human hematopoietic prostaglandin D2 synthase (HPGDS) is involved in the production of prostaglandin D2, which participates in various physiological processes, including inflammation, allergic reactions, and sleep regulation. Inhibitors of HPGDS have been investigated as potential anti-inflammatory agents. For the investigation of potent HPGDS inhibitors, we carried out a computational modeling study combining molecular docking and molecular dynamics simulation for selecting and virtual confirming the designed binders. We selected the structure of HPGDS (PDB ID: 2CVD) carrying its native inhibitor compound HQL as our research target. The random 5-mer peptide library was created by building the 3-D structure of random peptides using Rosetta Buildpeptide and performing conformational optimization. Molecular docking was carried out by accommodating the peptides into the location of their native binder and then conducting docking using FlexPepDock. The two peptides RMYYY and VMYMI, which display the lowest binding energy against HPGDS, were selected to perform a comparative study. The interaction of RMYYY and VMYMI against HPGDS was further confirmed using molecular dynamics simulation and aligned with its native binder, HQL. We show the selected binders to have stronger binding energy and more frequent interactions against HPGDS than HQL. In addition, we analyzed the solubility, hydrophobicity, charge, and bioactivity of the generated peptides, and we show that the selected strong binder may be further used as therapeutic drugs.
Collapse
Affiliation(s)
- Jing Cui
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi 214142, China (T.Y.)
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi 214142, China
| | - Yongwei Feng
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi 214142, China (T.Y.)
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi 214142, China
| | - Ting Yang
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi 214142, China (T.Y.)
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi 214142, China
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Heng Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|