1
|
Mu Y, Zhang N, Wei D, Yang G, Yao L, Xu X, Li Y, Xue J, Zhang Z, Chen T. Müller cells are activated in response to retinal outer nuclear layer degeneration in rats subjected to simulated weightlessness conditions. Neural Regen Res 2025; 20:2116-2128. [PMID: 39254570 PMCID: PMC11691450 DOI: 10.4103/nrr.nrr-d-23-01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/25/2023] [Accepted: 01/07/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00032/figure1/v/2024-09-09T124005Z/r/image-tiff A microgravity environment has been shown to cause ocular damage and affect visual acuity, but the underlying mechanisms remain unclear. Therefore, we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity. After 4 weeks of tail suspension, there were no notable alterations in retinal function and morphology, while after 8 weeks of tail suspension, significant reductions in retinal function were observed, and the outer nuclear layer was thinner, with abundant apoptotic cells. To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina, proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension. The results showed that the expression levels of fibroblast growth factor 2 (also known as basic fibroblast growth factor) and glial fibrillary acidic protein, which are closely related to Müller cell activation, were significantly upregulated. In addition, Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks, respectively, of simulated weightlessness. These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
Collapse
Affiliation(s)
- Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Ning Zhang
- Department of Emergency Medicine, Wuhan No.1 Hospital, Wuhan, Hubei Province, China
| | - Dongyu Wei
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Guoqing Yang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Lilingxuan Yao
- Third Regiment, School of Basic Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xinyue Xu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yang Li
- Fourth Regiment, School of Basic Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Junhui Xue
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Zuoming Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tao Chen
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Bokov RO, Sharlo KA, Vilchinskaya NA, Tyganov SA, Turtikova OV, Rozhkov SV, Deviatiiarov RM, Gusev OA, Tomilovskaya ES, Shenkman BS, Orlov OI. Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling. Physiol Genomics 2025; 57:357-382. [PMID: 40072920 DOI: 10.1152/physiolgenomics.00196.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).NEW & NOTEWORTHY The main findings of our study are as follows: 1) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; 2) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; 3) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; 4) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.
Collapse
Affiliation(s)
- Roman O Bokov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Kristina A Sharlo
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Turtikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Rozhkov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Oleg A Gusev
- Life Improvement by Future Technologies Center, Moscow, Russia
| | | | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oleg I Orlov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Bosutti A, Ganse B, Maffiuletti NA, Wüst RCI, Strijkers GJ, Sanderson A, Degens H. Microgravity-induced changes in skeletal muscle and possible countermeasures: What we can learn from bed rest and human space studies. Exp Physiol 2025. [PMID: 40098289 DOI: 10.1113/ep092345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Despite exercise countermeasures to sustain health and performance in spaceflight, complete maintenance of muscle mass and functions in microgravity is still not possible for most astronauts. The principal cause of the limited effectiveness of existing exercise countermeasures is the difficulty in achieving full loading forces in space. The implementation of countermeasures which require small devices and simulate Earth-like loading forces to maintain muscle mass, strength and endurance is therefore highly desirable. At present, the cellular mechanisms that induce muscle atrophy in weightlessness are not yet fully known; a better understanding of how skeletal muscle cells adapt to microgravity will help in designing more effective countermeasures to sustain the health and operational capacity of the crew during long- and short-duration missions. The 6° head-down-tilt bed rest is a powerful ground-based analogue platform to simulate and study the physiological effects of spaceflight on the human body, and test the effectiveness of countermeasures before they are potentially applied in space. The aims of this narrative review are therefore to provide an overview of (i) the main mechanisms underlining muscle atrophy learnt from space and bed rest studies, (ii) the currently available countermeasures, and (iii) potential suitable countermeasures - such as neuromuscular electrical stimulation that is delivered with light and small portable units - to attenuate muscle wasting in astronauts during spaceflight.
Collapse
Affiliation(s)
| | - Bergita Ganse
- Departments and Institutes of Surgery, Saarland University, Homburg, Germany
| | | | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andy Sanderson
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Department Life Sciences, Manchester Metropolitan University, Manchester, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
4
|
Michel JM, Godwin JS, Plotkin DL, McIntosh MC, Mattingly ML, Agostinelli PJ, Mueller BJ, Anglin DA, Kontos NJ, Berry AC, Vega MM, Pipkin AA, Stock MS, Graham ZA, Baweja HS, Mobley CB, Bamman MM, Roberts MD. Effects of leg immobilization and recovery resistance training on skeletal muscle-molecular markers in previously resistance-trained versus untrained adults. J Appl Physiol (1985) 2025; 138:450-467. [PMID: 39819075 DOI: 10.1152/japplphysiol.00837.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
We sought to examine how resistance training (RT) status in young healthy individuals, either well resistance trained (T, n = 10) or untrained (UT, n = 11), affected molecular markers with leg immobilization followed by recovery RT. All participants underwent 2 wk of left leg immobilization via a locking leg brace. Afterward, all participants underwent 8 wk (3 days/wk) of knee extensor-focused progressive RT. Vastus lateralis (VL) ultrasound-derived thickness and muscle cross-sectional area were measured at baseline (PRE), immediately after disuse (MID), and after RT (POST) with VL muscle biopsies also being collected at these time points. Both groups presented lower ultrasound-derived VL size metrics at MID versus PRE (P ≤ 0.001), and values increased in both groups from MID to POST (P < 0.05); however, VL size increased from PRE to POST in UT only (P < 0.001). Mean and type II myofiber cross-sectional area values were greater at PRE and POST versus MID (P < 0.05), with T being greater than UT throughout (P ≤ 0.012). In both groups, satellite cell number was not affected by leg immobilization but increased in response to RT (P ≤ 0.014), with T being greater than UT throughout (P = 0.004). Total RNA (ribosome content) decreased (P = 0.010) from PRE to MID while total RNA and certain endoplasmic reticulum stress proteins increased from MID to POST regardless of training status. Immobilization-induced muscle atrophy and recovery RT hypertrophy outcomes are similar between UT and T participants, and the lack of molecular signature differences between groups supports these findings. However, results are limited to younger adults undergoing noncomplicated disuse.NEW & NOTEWORTHY Formerly trained and untrained individuals demonstrate similar atrophic responses to disuse while untrained individuals exhibited a greater hypertrophic response to subsequent resistance training. The molecular responses accompanying these changes were largely similar between groups and included increases in satellite cell content with resistance training and increases in ribosome biogenesis, which was largely driven by the formerly trained group.
Collapse
Affiliation(s)
- J Max Michel
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Joshua S Godwin
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Daniel L Plotkin
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Mason C McIntosh
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | | | | | - Breanna J Mueller
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Derick A Anglin
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Nicholas J Kontos
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Alexander C Berry
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Marina Meyer Vega
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Autumn A Pipkin
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida, United States
| | - Zachary A Graham
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Harsimran S Baweja
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - C Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Marcas M Bamman
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
- Edward Via College of Osteopathic Medicine, Auburn, Alabama, United States
| |
Collapse
|
5
|
Moreno-Villanueva M, Jimenez-Chavez LE, Krieger S, Ding LH, Zhang Y, Babiak-Vazquez A, Berres M, Splinter S, Pauken KE, Schaefer BC, Crucian BE, Wu H. Transcriptomics analysis reveals potential mechanisms underlying mitochondrial dysfunction and T cell exhaustion in astronauts' blood cells in space. Front Immunol 2025; 15:1512578. [PMID: 39902046 PMCID: PMC11788081 DOI: 10.3389/fimmu.2024.1512578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction The impact of spaceflight on the immune system and mitochondria has been investigated for decades. However, the molecular mechanisms underlying spaceflight-induced immune dysregulations are still unclear. Methods In this study, blood from eleven crewmembers was collected before and during International Space Station (ISS) missions. Transcriptomic analysis was performed in isolated peripheral blood mononuclear cells (PBMCs) using RNA-sequencing. Differentially expresses genes (DEG) in space were determined by comparing of the inflight to the preflight samples. Pathways and statistical analyses of these DEG were performed using the Ingenuity Pathway Analysis (IPA) tool. Results In comparison to pre-flight, a total of 2030 genes were differentially expressed in PBMC collected between 135 and 210 days in orbit, which included a significant number of surface receptors. The dysregulated genes and pathways were mostly involved in energy and oxygen metabolism, immune responses, cell adhesion/migration and cell death/survival. Discussion Based on the DEG and the associated pathways and functions, we propose that mitochondria dysfunction was caused by constant modulation of mechano-sensing receptors in microgravity, which triggered a signaling cascade that led to calcium overloading in mitochondria. The response of PBMC in space shares T-cell exhaustion features, likely initiated by microgravity than by infection. Consequences of mitochondria dysfunction include immune dysregulation and prolonged cell survival which potentially explains the reported findings of inhibition of T cell activation and telomere lengthening in astronauts. Conclusion Our study potentially identifies the upstream cause of mitochondria dysfunction and the downstream consequences in immune cells.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Luis E. Jimenez-Chavez
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | | | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ye Zhang
- National Aeronautics and Space Administration, Kennedy Space Center, Cape Canaveral, FL, United States
| | - Adriana Babiak-Vazquez
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mark Berres
- Bioinformatics Resource and Gene Expression Center, University of Wisconsin, Madison, WI, United States
| | - Sandra Splinter
- Bioinformatics Resource and Gene Expression Center, University of Wisconsin, Madison, WI, United States
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Brian E. Crucian
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| | - Honglu Wu
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
6
|
Liu Y, Cao X, Zhou Q, Deng C, Yang Y, Huang D, Luo H, Zhang S, Li Y, Xu J, Chen H. Mechanisms and Countermeasures for Muscle Atrophy in Microgravity. Cells 2024; 13:2120. [PMID: 39768210 PMCID: PMC11727360 DOI: 10.3390/cells13242120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Previous studies have revealed that muscle atrophy emerges as a significant challenge faced by astronauts during prolonged missions in space. A loss in muscle mass results in a weakening of skeletal muscle strength and function, which will not only contribute to a decline in overall physical performance but also elevate the risk of various age-related diseases. Skeletal muscle atrophy in the microgravity environment is thought to be associated with changes in energy metabolism, protein metabolism, calcium ion homeostasis, myostatin levels, and apoptosis. Modulating some pathways could be a promising approach to mitigating muscle atrophy in the microgravity environment. This review serves as a comprehensive summary of research on the impact of microgravity on skeletal muscle, with the aim of providing insights into its pathogenesis and the development of effective treatments.
Collapse
Affiliation(s)
- Yizhou Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Yujie Yang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Danxia Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Hongmei Luo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Moriggi M, Ruggiero L, Torretta E, Zoppi D, Arosio B, Ferri E, Castegna A, Fiorillo C, Gelfi C, Capitanio D. Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants (Basel) 2024; 13:1406. [PMID: 39594549 PMCID: PMC11591206 DOI: 10.3390/antiox13111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking. This study investigates the molecular mechanisms and biomarkers in the biceps brachii of FSHD patients, classified according to the FSHD clinical score, the A-B-C-D classification scheme, and global proteomic variation. Our findings reveal distinct metabolic signatures and compensatory responses in patients. In severe cases, we observe pronounced metabolic dysfunction, marked by dysregulated glycolysis, activation of the reductive pentose phosphate pathway (PPP), a shift toward a reductive TCA cycle, suppression of oxidative phosphorylation, and an overproduction of antioxidants that is not matched by an increase in the redox cofactors needed for their function. This imbalance culminates in reductive stress, exacerbating muscle wasting and inflammation. In contrast, mild cases show metabolic adaptations that mitigate stress by activating polyols and the oxidative PPP, preserving partial energy flow through the oxidative TCA cycle, which supports mitochondrial function and energy balance. Furthermore, activation of the hexosamine biosynthetic pathway promotes autophagy, protecting muscle cells from apoptosis. In conclusion, our proteomic data indicate that specific metabolic alterations characterize both mild and severe FSHD patients. Molecules identified in mild cases may represent potential diagnostic and therapeutic targets for FSHD.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Dario Zoppi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy;
| | - Evelyn Ferri
- IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Environment, University of Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy;
| | - Chiara Fiorillo
- Child Neuropsychiatric Unit, IRCCS Istituto Giannina Gaslini, DINOGMI-University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| |
Collapse
|
8
|
Cotter JA, Plaza-Florido A, Adams GR, Haddad F, Scott JM, Everett M, Ploutz-Snyder L, Radom-Aizik S. Exercise Training Attenuates the Muscle Mitochondria Genomic Response to Bed Rest. Med Sci Sports Exerc 2024; 56:1615-1622. [PMID: 38650118 PMCID: PMC11326991 DOI: 10.1249/mss.0000000000003457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE Exercise training during the National Aeronautics and Space Administration 70-d bed rest study effectively counteracted the decline in aerobic capacity, muscle mass, strength, and endurance. We aimed to characterize the genomic response of the participants' vastus lateralis on day 64 of bed rest with and without exercise countermeasures. METHODS Twenty-two healthy young males were randomized into three groups: 1) bed rest only ( n = 7), 2) bed rest + aerobic (6 d·wk -1 ) and resistance training (3 d·wk -1 ) on standard equipment ( n = 7), and 3) bed rest + aerobic and resistance training using a flywheel device ( n = 8). The vastus lateralis gene and microRNA microarrays were analyzed using GeneSpring GX 14.9.1 (Agilent Technologies, Palo Alto, CA). RESULTS Bed rest significantly altered the expression of 2113 annotated genes in at least one out of the three study groups (fold change (FC) > 1.2; P < 0.05). Interaction analysis revealed that exercise attenuated the bed rest effect of 511 annotated genes (FC = 1.2, P < 0.05). In the bed rest only group, a predominant downregulation of genes was observed, whereas in the two exercise groups, there was a notable attenuation or reversal of this effect, with no significant differences between the two exercise modalities. Enrichment analysis identified functional categories and gene pathways, many of them related to the mitochondria. In addition, bed rest significantly altered the expression of 35 microRNAs (FC > 1.2, P < 0.05) with no difference between the three groups. Twelve are known to regulate some of the mitochondrial-related genes that were altered following bed rest. CONCLUSIONS Mitochondrial gene expression was a significant component of the molecular response to long-term bed rest. Although exercise attenuated the FC in the downregulation of many genes, it did not completely counteract all the molecular consequences.
Collapse
Affiliation(s)
- Joshua A. Cotter
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
- Physiology of EXercise and Sport (PEXS) Laboratory, Department of Kinesiology, California State University, Long Beach, CA
| | - Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| | - Gregory R. Adams
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA
| | - Fadia Haddad
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| | - Jessica M. Scott
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Meghan Everett
- National Aeronautics and Space Administration (NASA), Houston, TX
| | | | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| |
Collapse
|
9
|
Michel JM, Hettinger Z, Ambrosio F, Egan B, Roberts MD, Ferrando AA, Graham ZA, Bamman MM. Mitigating skeletal muscle wasting in unloading and augmenting subsequent recovery. J Physiol 2024. [PMID: 39031694 DOI: 10.1113/jp284301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024] Open
Abstract
Skeletal muscle wasting is the hallmark pathophysiological adaptation to unloading or disuse that demonstrates the dependency on frequent mechanical stimulation (e.g. muscle activation and subsequent loading) for homeostasis of normally load-bearing muscles. In the absence of mitigation strategies, no mammalian organism is resistant to muscle atrophy driven by unloading. Given the profound impact of unloading-induced muscle wasting on physical capacity, metabolic health and immune function; mitigation strategies during unloading and/or augmentation approaches during recovery have broad healthcare implications in settings of bed-bound hospitalization, cast immobilization and spaceflight. This topical review aims to: (1) provide a succinct, state-of-the-field summary of seminal and recent findings regarding the mechanisms of unloading-induced skeletal muscle wasting; (2) discuss unsuccessful vs. promising mitigation and recovery augmentation strategies; and (3) identify knowledge gaps ripe for future research. We focus on the rapid muscle atrophy driven by relatively short-term mechanical unloading/disuse, which is in many ways mechanistically distinct from both hypermetabolic muscle wasting and denervation-induced muscle atrophy. By restricting this discussion to mechanical unloading during which all components of the nervous system remain intact (e.g. without denervation models), mechanical loading requiring motor and sensory neural circuits in muscle remain viable targets for both mitigation and recovery augmentation. We emphasize findings in humans with comparative discussions of studies in rodents which enable elaboration of key mechanisms. We also discuss what is currently known about the effects of age and sex as biological factors, and both are highlighted as knowledge gaps and novel future directions due to limited research.
Collapse
Affiliation(s)
- J Max Michel
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Zachary Hettinger
- Discovery Center for Musculoskeletal Recovery, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan Egan
- School of Health & Human Performance, Dublin City University, Dublin, Ireland
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | | | - Arny A Ferrando
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Zachary A Graham
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Marcas M Bamman
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| |
Collapse
|
10
|
Murgia M, Rittweger J, Reggiani C, Bottinelli R, Mann M, Schiaffino S, Narici MV. Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts. NPJ Microgravity 2024; 10:60. [PMID: 38839773 PMCID: PMC11153545 DOI: 10.1038/s41526-024-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle undergoes atrophy and loss of force during long space missions, when astronauts are persistently exposed to altered gravity and increased ionizing radiation. We previously carried out mass spectrometry-based proteomics from skeletal muscle biopsies of two astronauts, taken before and after a mission on the International Space Station. The experiments were part of an effort to find similarities between spaceflight and bed rest, a ground-based model of unloading, focused on proteins located at the costameres. We here extend the data analysis of the astronaut dataset and show compartment-resolved changes in the mitochondrial proteome, remodeling of the extracellular matrix and of the antioxidant response. The astronauts differed in their level of onboard physical exercise, which correlated with their respective preservation of muscle mass and force at landing in previous analyses. We show that the mitochondrial proteome downregulation during spaceflight, particularly the inner membrane and matrix, was dramatic for both astronauts. The expression of autophagy regulators and reactive oxygen species scavengers, however, showed partially opposite expression trends in the two subjects, possibly correlating with their level of onboard exercise. As mitochondria are primarily affected in many different tissues during spaceflight, we hypothesize that reactive oxygen species (ROS) rather than mechanical unloading per se could be the primary cause of skeletal muscle mitochondrial damage in space. Onboard physical exercise might have a strong direct effect on the prevention of muscle atrophy through mechanotransduction and a subsidiary effect on mitochondrial quality control, possibly through upregulation of autophagy and anti-oxidant responses.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy.
- Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany.
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Matthias Mann
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
- CIR-MYO Myology Center, 35121, Padua, Italy
| |
Collapse
|
11
|
Blottner D, Moriggi M, Trautmann G, Furlan S, Block K, Gutsmann M, Torretta E, Barbacini P, Capitanio D, Rittweger J, Limper U, Volpe P, Gelfi C, Salanova M. Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight. Antioxidants (Basel) 2024; 13:432. [PMID: 38671880 PMCID: PMC11047620 DOI: 10.3390/antiox13040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Long-duration mission (LDM) astronauts from the International Space Station (ISS) (>180 ISS days) revealed a close-to-normal sarcolemmal nitric oxide synthase type-1 (NOS1) immunoexpression in myofibers together with biochemical and quantitative qPCR changes in deep calf soleus muscle. Nitro-DIGE analyses identified functional proteins (structural, metabolic, mitochondrial) that were over-nitrosylated post- vs. preflight. In a short-duration mission (SDM) astronaut (9 ISS days), s-nitrosylation of a nodal protein of the glycolytic flux, specific proteins in tricarboxylic acid (TCA) cycle, respiratory chain, and over-nitrosylation of creatine kinase M-types as signs of impaired ATP production and muscle contraction proteins were seen. S-nitrosylation of serotransferrin (TF) or carbonic anhydrase 3 (CA3b and 3c) represented signs of acute response microgravity muscle maladaptation. LDM nitrosoprofiles reflected recovery of mitochondrial activity, contraction proteins, and iron transporter TF as signs of muscle adaptation to microgravity. Nitrosated antioxidant proteins, alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR), and selenoprotein thioredoxin reductase 1 (TXNRD1) levels indicated signs of altered redox homeostasis and reduced protection from nitrosative stress in spaceflight. This work presents a novel spaceflight-generated dataset on s-nitrosylated muscle protein signatures from astronauts that helps both to better understand the structural and molecular networks associated to muscular nitrosative stress and to design countermeasures to dysfunction and impaired performance control in human spaceflight missions.
Collapse
Affiliation(s)
- Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Sandra Furlan
- C.N.R. Neuroscience Institute, I-35121 Padova, Italy;
| | - Katharina Block
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Martina Gutsmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
- Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Witten/Herdecke University, 51109 Cologne, Germany
| | - Pompeo Volpe
- Department of Biomedical Sciences, Università di Padova, I-35121 Padova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| |
Collapse
|
12
|
Morgan MF, Diab J, Gilliham M, Mortimer JC. Green horizons: how plant synthetic biology can enable space exploration and drive on Earth sustainability. Curr Opin Biotechnol 2024; 86:103069. [PMID: 38341984 DOI: 10.1016/j.copbio.2024.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
As humanity looks towards expanding activity from low Earth orbit to the Moon and beyond, resource use efficiency and self-sustainability will be critical to ensuring success in the long term. Furthermore, solutions developed for the stringent requirements of space will be equally valuable in meeting sustainability goals here on Earth. Advances in synthetic biology allow us to harness the complex metabolism of life to produce the materials we need in situ. Translating those lessons learned from microbial systems to more carbon-efficient photosynthetic organisms is an area of growing interest. Plants can be engineered to sustainably meet a range of needs, from fuels to materials and medicines.
Collapse
Affiliation(s)
- Matthew Fox Morgan
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia
| | - Jonathan Diab
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia.
| | - Jenny C Mortimer
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia; Joint BioEnergy Institute, CA, USA.
| |
Collapse
|
13
|
Zhang J, Gao Y, Yan J. Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration under Disuse Conditions. Metabolites 2024; 14:88. [PMID: 38392980 PMCID: PMC10891558 DOI: 10.3390/metabo14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged inactivity and disuse conditions, such as those experienced during spaceflight and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system, including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation of physiological and biochemical functions of local or distal tissues and organs, including itself, in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions. Based on this phenomenon, roles and mechanisms involved in the communication between skeletal muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under disuse conditions, as well as discuss future perspectives based on existing research.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiangwei Yan
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| |
Collapse
|
14
|
Eggelbusch M, Charlton BT, Bosutti A, Ganse B, Giakoumaki I, Grootemaat AE, Hendrickse PW, Jaspers Y, Kemp S, Kerkhoff TJ, Noort W, van Weeghel M, van der Wel NN, Wesseling JR, Frings-Meuthen P, Rittweger J, Mulder ER, Jaspers RT, Degens H, Wüst RCI. The impact of bed rest on human skeletal muscle metabolism. Cell Rep Med 2024; 5:101372. [PMID: 38232697 PMCID: PMC10829795 DOI: 10.1016/j.xcrm.2023.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
Collapse
Affiliation(s)
- Moritz Eggelbusch
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Nutrition and Dietetics, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands
| | - Braeden T Charlton
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | | - Bergita Ganse
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
| | - Ifigenia Giakoumaki
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Paul W Hendrickse
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Tom J Kerkhoff
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Julia R Wesseling
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Petra Frings-Meuthen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | - Edwin R Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Hans Degens
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lithuanian Sports University, Kaunas, Lithuania
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
16
|
Li L, Huang C, Pang J, Huang Y, Chen X, Chen G. Advances in research on cell models for skeletal muscle atrophy. Biomed Pharmacother 2023; 167:115517. [PMID: 37738794 DOI: 10.1016/j.biopha.2023.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Skeletal muscle, the largest organ in the human body, plays a crucial role in supporting and defending the body and is essential for movement. It also participates in regulating the processes of protein synthesis and degradation. Inhibition of protein synthesis and activation of degradation metabolism can both lead to the development of skeletal muscle atrophy, a pathological condition characterized by a decrease in muscle mass and fiber size. Many physiological and pathological conditions can cause a decline in muscle mass, but the underlying mechanisms of its pathogenesis remain incompletely understood, and the selection of treatment strategies and efficacy evaluations vary. Moreover, the early symptoms of this condition are often not apparent, making it easily overlooked in clinical practice. Therefore, it is necessary to develop and use cell models to understand the etiology and influencing factors of skeletal muscle atrophy. In this review, we summarize the methods used to construct skeletal muscle cell models, including hormone, inflammation, cachexia, genetic engineering, drug, and physicochemical models. We also analyze, compare, and evaluate the various construction and assessment methods.
Collapse
Affiliation(s)
- Liwei Li
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Chunman Huang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Jingqun Pang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Yongbin Huang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Xinxin Chen
- Institute of Health Promotion and Medical Communication Studies, Affliated Hospital of Guangdong Medical University, South Renmin Road 57, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Guanghua Chen
- Orthopaedic Center, Affliated Hospital of Guangdong Medical University, South Renmin Road 57, Xiashan District, Zhanjiang 524000, Guangdong, China.
| |
Collapse
|
17
|
Malhan D, Schoenrock B, Yalçin M, Blottner D, Relόgio A. Circadian regulation in aging: Implications for spaceflight and life on earth. Aging Cell 2023; 22:e13935. [PMID: 37493006 PMCID: PMC10497835 DOI: 10.1111/acel.13935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
| | - Britt Schoenrock
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Müge Yalçin
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dieter Blottner
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Neuromuscular System and Neuromuscular SignalingBerlin Center of Space Medicine & Extreme EnvironmentsBerlinGermany
| | - Angela Relόgio
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
18
|
Malhan D, Yalçin M, Schoenrock B, Blottner D, Relógio A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 2023; 9:30. [PMID: 37012297 PMCID: PMC10070655 DOI: 10.1038/s41526-023-00273-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Britt Schoenrock
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Neuromuscular System and Neuromuscular Signaling, Berlin Center of Space Medicine & Extreme Environments, Berlin, 10115, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|