1
|
Najafi M, Marandi G. Synthesis of novel organophosphorus compounds via reaction of substituted 2-oxoindoline-3-ylidene with acetylenic diesters and triphenylphosphine or triphenyl phosphite. Sci Rep 2024; 14:6314. [PMID: 38491081 PMCID: PMC10943016 DOI: 10.1038/s41598-024-56774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
An efficient reaction between triphenylphosphine or triphenyl phosphite and 2-oxoindoline-3-ylidene derivatives in the presence of acetylenic esters leads to functionalized 2-oxoindoline-3-ylidene containing phosphorus ylieds or phosphonate esters. All compounds obtained in these reactions are stable and have good yields.
Collapse
Affiliation(s)
- Mahsa Najafi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Ghasem Marandi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
2
|
Osipova NA, Panova AY, Efremov AM, Lozinskaya NA, Beznos OV, Katargina LA. Melatonin and its bioisosteres as potential therapeutic agents for the treatment of retinopathy of prematurity. Chem Biol Drug Des 2024; 103:e14504. [PMID: 38480485 DOI: 10.1111/cbdd.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
We conducted a study on the impact of intraperitoneal injections of melatonin and its three bioisosteres (compounds 1-3) on the development of oxygen-induced retinopathy in newborn rats during a 21-day experiment. It was demonstrated that melatonin and its analogues 1-3 effectively reduce the total protein concentration in the vitreous body of rat pups, decrease concentration of VEGF-A, and lower the level of oxidative stress (as indicated by normalization of antioxidant activity in the vitreous body). Melatonin and its analogues 1-3 equally normalize the level of VEGF-A. Analogues 1 and 2 even exceed melatonin in their ability to reduce protein influx into the vitreous body. However, analogue 2 had no effect on antioxidant activity, while analogues 1 and 3 caused a significant increase in this parameter, with analogue 3 even slightly exceeding melatonin. Thus, it can be concluded that analogues 1-3 are comparable to melatonin and can be utilized as potential therapeutic agents for the treatment of retinopathy of prematurity.
Collapse
Affiliation(s)
- N A Osipova
- Helmholtz National Medical Center of Eye Diseases, Moscow, Russia
| | - A Y Panova
- Helmholtz National Medical Center of Eye Diseases, Moscow, Russia
| | - A M Efremov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - N A Lozinskaya
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - O V Beznos
- Helmholtz National Medical Center of Eye Diseases, Moscow, Russia
| | - L A Katargina
- Helmholtz National Medical Center of Eye Diseases, Moscow, Russia
| |
Collapse
|
3
|
Bogdanov AV, Neganova M, Voloshina A, Lyubina A, Amerhanova S, Litvinov IA, Tsivileva O, Akylbekov N, Zhapparbergenov R, Valiullina Z, Samorodov AV, Alabugin I. Anticancer and Antiphytopathogenic Activity of Fluorinated Isatins and Their Water-Soluble Hydrazone Derivatives. Int J Mol Sci 2023; 24:15119. [PMID: 37894799 PMCID: PMC10607100 DOI: 10.3390/ijms242015119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
A series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (3a), chloro (3b), or bis-fluoro (3d) substitution on the biological activity of this pharmacophore. Furthermore, the new isatins could be converted into water-soluble isatin-3-hydrazones using their acid-catalyzed reaction with Girard's reagent P and its dimethyl analog. The cytotoxic action of these substances is associated with the induction of apoptosis caused by mitochondrial membrane dissipation and stimulated reactive oxygen species production in tumor cells. In addition, compounds 3a and 3b exhibit platelet antiaggregation activity at the level of acetylsalicylic acid, and the whole series of fluorine-containing isatins does not adversely affect the hemostasis system as a whole. Among the new water-soluble pyridinium isatin-3-acylhydrazones, compounds 7c and 5c,e exhibit the highest antagonistic effect against phytopathogens of bacterial and fungal origin and can be considered useful leads for combating plant diseases.
Collapse
Affiliation(s)
- Andrei V. Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Entuziastov Ave. 13, Saratov 410049, Russia;
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan;
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan;
| | - Zulfiia Valiullina
- Department of Pharmacology, Bashkir State Medical University, Lenin St. 8, Ufa 450008, Russia; (Z.V.); (A.V.S.)
| | - Alexandr V. Samorodov
- Department of Pharmacology, Bashkir State Medical University, Lenin St. 8, Ufa 450008, Russia; (Z.V.); (A.V.S.)
| | - Igor Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA
| |
Collapse
|