1
|
Černáková L, Haluz P, Mastihuba V, Košťálová Z, Karnišová Potocká E, Mastihubová M. Enzymatic β-Mannosylation of Phenylethanoid Alcohols. Molecules 2025; 30:414. [PMID: 39860283 PMCID: PMC11767590 DOI: 10.3390/molecules30020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide. Several studies suggest an important role of the saccharidic fragment in the biological activities of PhGs, provoking demand for new glycovariants of natural PhGs. This study presents the preparation of β-mannosylated analogs of tyrosol β-D-glucopyranoside (salidroside) and hydroxytyrosol β-D-glucopyranoside (hydroxysalidroside). While the chemical synthesis of β-D-mannopyranosides is rather challenging, they can be prepared by enzymatic catalysis. We found that Novozym 188, an industrial β-glucosidase, also contains β-mannosidase and used this enzyme in the preparation of tyrosol β-D-mannopyranoside and hydroxytyrosol β-D-mannopyranoside in 12 and 16% chemical yields, respectively, by transglycosylation from β-D-mannopyranosyl-(1→4)-D-mannose. The mannosylation was chemoselective and occurred exclusively on the primary hydroxyls of tyrosol and hydroxytyrosol, and the glycosylation of phenolic moieties of the aglycons was observed.
Collapse
Affiliation(s)
| | | | | | | | | | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.); (Z.K.)
| |
Collapse
|
2
|
Černáková L, Macková M, Klempová T, Haluz P, Mastihuba V, Mastihubová M. Enzymatic Methoxycarbonylation of Tyrosol and Hydroxytyrosol. Int J Mol Sci 2024; 25:10057. [PMID: 39337541 PMCID: PMC11432353 DOI: 10.3390/ijms251810057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Tyrosol and hydroxytyrosol are powerful phenolic antioxidants occurring in olive oil and in by-products from olive processing. Due to their high polarity, esterification or other lipophilization is necessary to make them compatible with lipid matrices. Hydroxytyrosol methyl carbonate is a more effective antioxidant than dibutylhydroxytoluene or α-tocopherol and together with tyrosol methyl carbonate exerts interesting pharmacological properties. The purpose of this work was the enzymatic preparation of alkyl carbonates of tyrosol and hydroxytyrosol. A set of 17 hydrolases was tested in the catalysis of tyrosol methoxycarbonylation in neat dimethyl carbonate to find an economically feasible alternative to the recently reported synthesis of methyl carbonates catalyzed by Novozym 435. Novozym 435 was, however, found to be the best performing catalyst, while Novozym 735, pig pancreatic lipase, lipase F-AK and Lipex 100T exhibited limited reactivity. No enzyme accepted 1,2-propylene carbonate as the acylation donor. Under optimized reaction conditions, Novozym 435 was used in the batch preparation of tyrosol methyl carbonate and hydroxytyrosol methyl carbonate in quantitative yields. The enzymatic methoxycarbonylation of tyrosol and hydroxytyrosol can also be used as a method for their selective protection in enzymatic syntheses of phenylethanoid glycosides catalyzed with enzymes comprising high levels of acetyl esterase side activity.
Collapse
Affiliation(s)
- Lucia Černáková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.)
| | - Michaela Macková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (T.K.)
| | - Tatiana Klempová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (T.K.)
| | - Peter Haluz
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.)
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.)
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.)
| |
Collapse
|
3
|
Weiz G, González AL, Mansilla IS, Fernandez-Zapico ME, Molejón MI, Breccia JD. Rutinosides-derived from Sarocladium strictum 6-O-α-rhamnosyl-β-glucosidase show enhanced anti-tumoral activity in pancreatic cancer cells. Microb Cell Fact 2024; 23:133. [PMID: 38720294 PMCID: PMC11077868 DOI: 10.1186/s12934-024-02395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-β-glucosidase (αRβG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRβG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS αRβG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.
Collapse
Affiliation(s)
- Gisela Weiz
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
| | - Alina L González
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Iara S Mansilla
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Martín E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - María I Molejón
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Javier D Breccia
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| |
Collapse
|
4
|
Baglioni M, Fries A, Müller JM, Omarini A, Müller M, Breccia JD, Mazzaferro LS. Acremonium sp. diglycosidase-aid chemical diversification: valorization of industry by-products. Appl Microbiol Biotechnol 2024; 108:250. [PMID: 38430417 PMCID: PMC10908641 DOI: 10.1007/s00253-023-12957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 03/03/2024]
Abstract
The fungal diglycosidase α-rhamnosyl-β-glucosidase I (αRβG I) from Acremonium sp. DSM 24697 catalyzes the glycosylation of various OH-acceptors using the citrus flavanone hesperidin. We successfully applied a one-pot biocatalysis process to synthesize 4-methylumbellipheryl rutinoside (4-MUR) and glyceryl rutinoside using a citrus peel residue as sugar donor. This residue, which contained 3.5 % [w/w] hesperidin, is the remaining of citrus processing after producing orange juice, essential oil, and peel-juice. The low-cost compound glycerol was utilized in the synthesis of glyceryl rutinoside. We implemented a simple method for the obtention of glyceryl rutinoside with 99 % yield, and its purification involving activated charcoal, which also facilitated the recovery of the by-product hesperetin through liquid-liquid extraction. This process presents a promising alternative for biorefinery operations, highlighting the valuable role of αRβG I in valorizing glycerol and agricultural by-products. KEYPOINTS: • αRβG I catalyzed the synthesis of rutinosides using a suspension of OPW as sugar donor. • The glycosylation of aliphatic polyalcohols by the αRβG I resulted in products bearing a single rutinose moiety. • αRβG I catalyzed the synthesis of glyceryl rutinoside with high glycosylation/hydrolysis selectivity (99 % yield).
Collapse
Affiliation(s)
- Micaela Baglioni
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Av. Uruguay, 151, Santa Rosa, La Pampa, Argentina
| | - Alexander Fries
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Av. Uruguay, 151, Santa Rosa, La Pampa, Argentina
| | - Jan-Mathis Müller
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Av. Uruguay, 151, Santa Rosa, La Pampa, Argentina
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Alejandra Omarini
- Laboratorio de Biotecnología Fúngica y de los Alimentos. Asociación para el Desarrollo de Villa Elisa y Zona (ADVEZ), Héctor de Elia 1247, E3265, Villa Elisa, Entre Ríos, Argentina
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Javier D Breccia
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Av. Uruguay, 151, Santa Rosa, La Pampa, Argentina
| | - Laura S Mazzaferro
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Av. Uruguay, 151, Santa Rosa, La Pampa, Argentina.
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany.
| |
Collapse
|