1
|
Bao YT, Mao HB, Lei KW, Hu JB, Huang J. A mitochondrial targeted fluorescent probe for imaging nitroreductase activity and photodynamic therapy in tumor cells. Talanta 2025; 285:127392. [PMID: 39700715 DOI: 10.1016/j.talanta.2024.127392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
The hypoxic environment in tumors is closely linked to tumor structure, function, dissemination, invasion, metastasis, and drug resistance. Nitroreductase (NTR) is often recognized as a biomarker to evaluate the hypoxia degree for tumor cells. Traditional detection methods such as PET, MRI and multispectral photoacoustic tomography have limitations. Fluorescent probes have garnered attention due to their high sensitivity, rapid response, specificity, and non-invasive nature. In this study, we introduced a novel small molecule fluorescent probe, T-TPE-NO2, designed with an AIE molecular framework TPE and successfully targeted to the mitochondria of tumor cells. The probe had high selectivity and could detect NTR activity in a broad pH range. Additionally, the probe exhibits high sensitivity with a LOD of 46.3 ng/mL. Under tumor NTR, the probe emitted strong fluorescence signals and generated a substantial amount of reactive oxygen species upon laser irradiation, thereby inducing tumor cell death and enabling photodynamic therapy. The synthesis, structural and morphological characterization of the probe were rigorously validated. Experimental results demonstrate that T-TPE-NO2 exhibited high sensitivity and selectivity for tumor cells, highlighting its potential application in photodynamic therapy. This research offers a new approach for the detection and treatment of tumor hypoxia.
Collapse
Affiliation(s)
- Ya-Ting Bao
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hai-Bo Mao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ke-Wei Lei
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jing-Bo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Jing Huang
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
2
|
Yuan J, Yang H, Huang W, Liu S, Zhang H, Zhang X, Peng X. Design strategies and applications of cyanine dyes in phototherapy. Chem Soc Rev 2025; 54:341-366. [PMID: 39576179 DOI: 10.1039/d3cs00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cyanine dyes have been widely used in phototherapy in recent years due to their excellent optical properties and diverse modifiable structures. This review provides detailed descriptions of the basic structures of various cyanines and their derivatives as well as their optical properties. It summarizes the strategies for constructing cyanine dyes for phototherapy and discusses their structure-effect relationship. Furthermore, a comprehensive classification and summary of the applications of cyanine dyes in phototherapy are presented. Importantly, this review also addresses both the advances made in this field as well as the challenges that need to be overcome. We hope that these profound insights into phototherapy using cyanine dyes will facilitate the design of future systems for clinical applications based on these compounds.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Hanxue Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Wenhui Huang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Shilong Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
- College of Materials Science and Engineering, Shenzhen University, Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
3
|
He L. Special Issue "Research Progress of Bioimaging Materials". Int J Mol Sci 2024; 25:10363. [PMID: 39408692 PMCID: PMC11477410 DOI: 10.3390/ijms251910363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
In the context of increasingly diverse diseases, early diagnosis and prevention, particularly in cancer control, have become more important than ever [...].
Collapse
Affiliation(s)
- Liangcan He
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Jiang S, Xu L, Zhong Y, Zhang C, Yu X, Li K, Ding L, Wang X. Hemicyanine-Based Highly Water-Soluble Probe for Extracellular Nitroreductase. Chembiochem 2024; 25:e202400257. [PMID: 38847484 DOI: 10.1002/cbic.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Indexed: 07/19/2024]
Abstract
Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.
Collapse
Affiliation(s)
- Shaoli Jiang
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Le Xu
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yihong Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chuangchuang Zhang
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoyu Yu
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ke Li
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
5
|
Zhou Y, Yang X, Zhang J, Xu S, Yan M. A near-infrared fluorescence probe with large Stokes shift for selectively monitoring nitroreductase in living cells and mouse tumor models. Talanta 2024; 274:125976. [PMID: 38579417 DOI: 10.1016/j.talanta.2024.125976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Hypoxia is commonly regarded as a typical feature of solid tumors, which originates from the insufficient supply of oxygen. Herein, the development of an efficient method for assessing hypoxia levels in tumors is strongly desirable. Nitroreductase (NTR) is an overexpressed reductase in the solid tumors, has been served as a potential biomarker to evaluate the degrees of hypoxia. In this work, we elaborately synthesized a new near-infrared (NIR) fluorescence probe (MR) to monitor NTR activity for assessment of hypoxia levels in living cells and in tumors. Upon exposure of NTR, the nitro-unit of MR could be selectively reduced to amino-moiety with the help of nicotinamide adenine dinucleotide. Moreover, the obtained fluorophore emitted a prominent NIR fluorescence, because it possessed a classical "push-pull" structure. The MR displayed several distinguished characters toward NTR, including intense NIR fluorescent signals, large Stokes shift, high selectivity and low limit of detection (46 ng/mL). Furthermore, cellular confocal fluorescence imaging results validated that the MR had potential of detecting NTR levels in hypoxic cells. Significantly, using the MR, the elevated of NTR levels were successfully visualized in the tumor-bearing mouse models. Therefore, this detecting platform based on this probe may be tactfully constructed for monitoring the variations of NTR and estimating the degrees of hypoxia in tumors.
Collapse
Affiliation(s)
- Yongqing Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, People's Republic of China.
| |
Collapse
|