1
|
Kuang C, Hirai A, Kamei-Νagata C, Nango H, Ohtani M, Omori K, Takashiba S. Effects of aged garlic extract on experimental periodontitis in mice. Biomed Rep 2025; 22:97. [PMID: 40297801 PMCID: PMC12035598 DOI: 10.3892/br.2025.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Aged garlic extract (AGE) has been reported to exert anti-inflammatory effects. AGE has been recently found to reduce the inflammatory symptoms of periodontitis, a widespread chronic inflammatory disease caused by oral bacterial infection. However, the mechanisms underlying these effects remain unclear. In the present study, it was aimed to determine the effects of AGE on experimental periodontitis and the related inflammatory factors. AGE (2 g/kg/day) was orally administered to 15 mice during the experimental period, while a control group consisted of 15 mice that received pure water. A total of 3 days after initiation of administration, the left maxillary second molar was ligated with a 5-0 silk thread for 7 days. Blood biochemical tests were performed to monitor the systemic effects of AGE. Alveolar bone loss was measured morphometrically using a stereomicroscope, and reverse transcription-quantitative PCR was performed to assay mRNAs of proinflammatory cytokines in gingival tissues. A histological survey was also performed to identify osteoclasts in periodontitis lesions (five mice per group). The total protein and albumin levels showed no significant differences between the AGE and control groups. However, ligation-induced bone resorption was lower in the AGE group than in the control group (P=0.01). Additionally, ligature increased the mRNA expression of inflammatory cytokines, whereas AGE administration tended to suppress them. Remarkably, tumor necrosis factor gene expression was significantly suppressed (P=0.04). The number of osteoclasts in periodontitis lesions was reduced in the AGE-treated group. These results indicate that AGE prevents alveolar bone loss by suppressing the inflammatory responses related to osteoclast differentiation in the periodontal tissue. Further research is needed to elucidate the role of AGE in reducing inflammatory bone resorption.
Collapse
Affiliation(s)
- Canyan Kuang
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8525, Japan
| | - Anna Hirai
- Division of Periodontics and Endodontics, Department of Dentistry, Okayama University Hospital, Kita-ku, Okayama 700-8558, Japan
| | - Chiaki Kamei-Νagata
- Division of Periodontics and Endodontics, Department of Dentistry, Okayama University Hospital, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Nango
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., 1Aki-takata, Hiroshima 739-1195, Japan
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Funabashi, Chiba 274-8555, Japan
| | - Masahiro Ohtani
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., 1Aki-takata, Hiroshima 739-1195, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8525, Japan
| |
Collapse
|
2
|
Luo XT, Hu HR, Sun ZD, Zhang LH, Li Y. Multi-omics analysis reveals that low cathepsin S expression aggravates sepsis progression and worse prognosis via inducing monocyte polarization. Front Cell Infect Microbiol 2025; 15:1531125. [PMID: 40115073 PMCID: PMC11922721 DOI: 10.3389/fcimb.2025.1531125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Background Monocytes represent a vital cellular subpopulation in the peripheral blood, crucial in the progression of sepsis. Nonetheless, the prognostic role and precise function of monocytes in sepsis are still inadequately understood. Methods Single-cell transcriptomic sequencing and bioinformatics analysis were performed on peripheral blood samples from septic patients to identify key molecules in cell subsets. Subsequently, the expression pattern of this molecule was validated through diverse biological experiments, encompassing quantitative RT-PCR, western blotting, and immunofluorescence. Finally, the functionality of this molecule was evaluated using its specific agonist. Results A total of 22 monocytes-related biomarkers were identified from single-cell and bulk RNA-seq analyses. Initially, LASSO analysis was performed to derive a prognostic signature composed of 4 key genes, including CD14, CTSS, CXCL8 and THBS1. Subsequently, mendelian randomization and survival analysis demonstrated that only CTSS showed crucially protective role in sepsis development and prognosis. Next, CTSS was confirmed to be lower expressed in peripheral monocytes of septic patients. Inflammatory markers (p < 0.05) and migration ability of LPS-activated monocytes were significantly reduced after CTSS agonist. In addition, CTSS agonist decreased the pulmonary tissue monocyte/macrophages infiltration in septic mice. Conclusion Monocyte marker CTSS represent a promising target for the diagnosis and prognosis evaluation of sepsis and plays a critical role in monocytes activation, tissue inflammatory response and macrophages infiltration. Thus, CTSS agonist probably serves as new drug for clinical protection against sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Yan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Zhang T, Fu JN, Chen GB, Zhang X. Plac8-ERK pathway modulation of monocyte function in sepsis. Cell Death Discov 2024; 10:308. [PMID: 38961068 PMCID: PMC11222481 DOI: 10.1038/s41420-024-02012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Sepsis, a life-threatening condition caused by infection, is characterized by the dysregulation of immune responses and activation of monocytes. Plac8, a protein, has been implicated in various inflammatory conditions. This study aimed to investigate the effect of Plac8 upregulation on monocyte proliferation and activation in sepsis patients. Peripheral blood samples were collected from healthy individuals and sepsis patients. Monocytes were stimulated with lipopolysaccharide (LPS) to create an in vitro sepsis model, while a murine sepsis model was established using cecal ligation and puncture (CLP). The levels of monocyte markers, proliferation index (PI), and pro-inflammatory cytokines were assessed using flow cytometry and qPCR, respectively. Plac8 and phosphorylated ERK protein levels were determined by western blot, and TNF-α, IL-6, and IL-10 levels were quantified using ELISA. The CCK-8 assay was used to evaluate PBMC proliferation and activation. The results showed that Plac8 was highly expressed in sepsis models, promoting the survival, proliferation, and activation of monocytes. Plac8 upregulation activated the ERK pathway, leading to increased phosphorylation of ERK protein and elevated levels of CD14, CD16, TNF-α, IL-6, Plac8, and IL-10. In sepsis mice, Plac8 overexpression similarly activated the ERK pathway and promoted the survival, proliferation, and activation of monocytes. In conclusion, the upregulation of Plac8 enhances the activation of the ERK pathway and promotes monocyte proliferation and activation in sepsis patients.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
| | - Jing-Nan Fu
- Department of Minimally Invasive Surgery, Characteristics Medical Center of Chinese People Armed Police Force, Tianjin, China
| | - Gui-Bing Chen
- Department of General Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiu Zhang
- Department of Emergency, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| |
Collapse
|
4
|
López-Collazo E, del Fresno C. Endotoxin tolerance and trained immunity: breaking down immunological memory barriers. Front Immunol 2024; 15:1393283. [PMID: 38742111 PMCID: PMC11089161 DOI: 10.3389/fimmu.2024.1393283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER), Respiratory Diseases (CIBRES), Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
5
|
Ruan H, Zhang Q, Zhang YP, Li SS, Ran X. Unraveling the role of HIF-1α in sepsis: from pathophysiology to potential therapeutics-a narrative review. Crit Care 2024; 28:100. [PMID: 38539163 PMCID: PMC10976824 DOI: 10.1186/s13054-024-04885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis is characterized by organ dysfunction resulting from a dysregulated inflammatory response triggered by infection, involving multifactorial and intricate molecular mechanisms. Hypoxia-inducible factor-1α (HIF-1α), a notable transcription factor, assumes a pivotal role in the onset and progression of sepsis. This review aims to furnish a comprehensive overview of HIF-1α's mechanism of action in sepsis, scrutinizing its involvement in inflammatory regulation, hypoxia adaptation, immune response, and organ dysfunction. The review encompasses an analysis of the structural features, regulatory activation, and downstream signaling pathways of HIF-1α, alongside its mechanism of action in the pathophysiological processes of sepsis. Furthermore, it will delve into the roles of HIF-1α in modulating the inflammatory response, including its association with inflammatory mediators, immune cell activation, and vasodilation. Additionally, attention will be directed toward the regulatory function of HIF-1α in hypoxic environments and its linkage with intracellular signaling, oxidative stress, and mitochondrial damage. Finally, the potential therapeutic value of HIF-1α as a targeted therapy and its significance in the clinical management of sepsis will be discussed, aiming to serve as a significant reference for an in-depth understanding of sepsis pathogenesis and potential therapeutic targets, as well as to establish a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - You-Ping Zhang
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Sheng Li
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|