1
|
Percio F, Rubio L, Amorim‐Silva V, Botella MA. Crucial Roles of Brassinosteroids in Cell Wall Composition and Structure Across Species: New Insights and Biotechnological Applications. PLANT, CELL & ENVIRONMENT 2025; 48:1751-1767. [PMID: 39491539 PMCID: PMC11788965 DOI: 10.1111/pce.15258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Brassinosteroids (BR) are steroidal phytohormones essential for plant growth, development, and stress resistance. They fulfil this role partially by modulating cell wall structure and composition through the control of gene expression involved in primary and secondary cell wall biosynthesis and metabolism. This affects the deposition of cellulose, lignin, and other components, and modifies the inner architecture of the wall, allowing it to adapt to the developmental status and environmental conditions. This review focuses on the effects that BR exerts on the main components of the cell wall, cellulose, hemicellulose, pectin and lignin, in multiple and relevant plant species. We summarize the outcomes that result from modifying cell wall components by altering BR gene expression, applying exogenous BR and utilizing natural variability in BR content and describing new roles of BR in cell wall structure. Additionally, we discuss the potential use of BR to address pressing needs, such as increasing crop yield and quality, enhancing stress resistance and improving wood production through cell wall modulation.
Collapse
Affiliation(s)
- Francisco Percio
- Área de Mejora y Fisiología de Plantas, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaMálagaSpain
| | - Lourdes Rubio
- Departamento de Botánica y Fisiología Vegetal, Facultad de CienciasUniversidad de MálagaMálagaMálagaSpain
| | - Vitor Amorim‐Silva
- Área de Mejora y Fisiología de Plantas, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaMálagaSpain
| | - Miguel A. Botella
- Área de Mejora y Fisiología de Plantas, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaMálagaSpain
| |
Collapse
|
2
|
Wang H, Fang J, Li X, Sun P, Gao H, Ren Y, Liu Y, Feng Z, Dong L. Epigenetic Regulation of CYP72A385-Mediated Metabolic Resistance to Novel Auxin Herbicide Florpyrauxifen-benzyl in Echinochloa crus-galli (L.) P. Beauv. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600742 DOI: 10.1021/acs.jafc.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Weed's metabolic resistance to herbicides has undermined the sustainability of herbicides and global food security. Notably, we identified an Echinochloa crus-galli (L.) P. Beauv population (R) that evolved resistance to the never-used florpyrauxifen-benzyl, in which florpyrauxifen-benzyl was metabolized faster than the susceptible E. crus-galli population (S). RNA-seq identified potential metabolism-related genes, EcCYP72A385 and EcCYP85A1, whose expression in yeast exhibited the capacity to degrade florpyrauxifen-benzyl. Region-2 in the EcCYP72A385 promoter showed significant demethylation after florpyrauxifen-benzyl treatment in the R population. DNA methyltransferase inhibitors induce EcCYP72A385 overexpression in the S population and endow it with tolerance to florpyrauxifen-benzyl. Moreover, methyltransferase-like 7A (EcMETTL7A) was overexpressed in the S population and specifically bound to the EcCYP72A385 promoter. Transgenic EcCYP72A385 in Arabidopsis and Oryza sativa L. exhibited resistance to florpyrauxifen-benzyl, whereas EcMETTL7A transgenic plants were sensitive. Overall, EcCYP72A385 is the principal functional gene for conferring resistance to florpyrauxifen-benzyl and is regulated by EcMETTL7A in E. crus-galli.
Collapse
Affiliation(s)
- Hao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiapeng Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaoxu Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Penglei Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haitao Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanrong Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhike Feng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Zhou W, Zhang L, He J, Chen W, Zhao F, Fu C, Li M. Transcriptome Shock in Developing Embryos of a Brassica napus and Brassica rapa Hybrid. Int J Mol Sci 2023; 24:16238. [PMID: 38003428 PMCID: PMC10671433 DOI: 10.3390/ijms242216238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Interspecific crosses that fuse the genomes of two different species may result in overall gene expression changes in the hybrid progeny, called 'transcriptome shock'. To better understand the expression pattern after genome merging during the early stages of allopolyploid formation, we performed RNA sequencing analysis on developing embryos of Brassica rapa, B. napus, and their synthesized allotriploid hybrids. Here, we show that the transcriptome shock occurs in the developing seeds of the hybrids. Of the homoeologous gene pairs, 17.1% exhibit expression bias, with an overall expression bias toward B. rapa. The expression level dominance also biases toward B. rapa, mainly induced by the expression change in homoeologous genes from B. napus. Functional enrichment analysis revealed significant differences in differentially expressed genes (DEGs) related to photosynthesis, hormone synthesis, and other pathways. Further study showed that significant changes in the expression levels of the key transcription factors (TFs) could regulate the overall interaction network in the developing embryo, which might be an essential cause of phenotype change. In conclusion, the present results have revealed the global changes in gene expression patterns in developing seeds of the hybrid between B. rapa and B. napus, and provided novel insights into the occurrence of transcriptome shock for harnessing heterosis.
Collapse
Affiliation(s)
- Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Feifan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|