1
|
Fan W, Zhai F, Yuan Z, Hu G, Wang L. The Mechanism of Xuanyu Tongjing Decoction Regulating NOD/NFκB Pathway to Inhibit Ectopic Tissue Inflammation to Reduce Ovarian Damage in Rats with Ovarian Endometriosis. Drug Des Devel Ther 2025; 19:2717-2735. [PMID: 40231194 PMCID: PMC11994466 DOI: 10.2147/dddt.s500129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction In traditional Chinese medicine texts, Xuanyu Tongjing Decoction (XYTJD) is a prescribed remedy for premenstrual belly pain and dysmenorrhea. It is currently routinely used to treat ovarian endometriosis (OEM) with good outcomes. Aim In order to investigate the underlying processes of Xuanyu Tongjing Decoction in treating OEM inflammation and reducing ovarian damage. Methods We created a rat model of OEM and carried out transcriptome sequencing. Batch molecular docking technique in conjunction with Ultra-high-performance liquid chromatography-quadrupole-time-of-flight-high-resolution mass spectrometry was used to screen the main active components in Xuanyu Tongjing Decoction. Results The ectopic cyst was firmly attached to the ovary in our successfully created rat model of ovarian endometriosis. According to GSEA enrichment study, XYTJD may up-regulate pathways linked to oocyte formation in ovarian tissues and down-regulate immunological and inflammatory pathways in ectopic tissues. Rat ectopic tissues and human ectopic tissues showed a similar pattern in the expression of the NOD/NFκB pathway during the proliferative phase. In ectopic tissues of rats, XYTJD may down-regulate the NOD/NFκB pathway and suppress the expression of TNF-α and IL-1β, which are downstream inflammatory factors in this pathway. In addition, XYTJD may restore the down-regulation of cAMP/PI3K/AKT and lower the expression of apoptotic factor CASP9, endoplasmic reticulum stress protein SEC61B and antioxidant protein GSTM5 in the ovary with ectopic tissue attachment. Following identification, the three samples' intersection included 10 active compounds in total. There was a 21-component overlap in active ingredients between rat and human serum. After a preliminary virtual screening, β-Hederin, Proanthocyanidin A2, and Cimiside E were suggested to be the essential components that interfere with NOD/NFκB. Conclusion In rats with proliferative OEM, XYTJD may down-regulate the NOD/NFκB pathway in ectopic tissues, consequently alleviating ovarian tissue damage by reducing inflammation brought on by ectopic tissues.
Collapse
Affiliation(s)
- Weisen Fan
- Department of Gynecology, Guang ‘anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Fengting Zhai
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250013, People’s Republic of China
| | - Zheng Yuan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250013, People’s Republic of China
| | - Guotao Hu
- Department of Gynecology, Guang ‘anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Li Wang
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250013, People’s Republic of China
| |
Collapse
|
2
|
Heidarzadeh-Asl S, Maurer M, Kiani A, Atiakshin D, Stahl Skov P, Elieh-Ali-Komi D. Novel insights on the biology and immunologic effects of histamine: A road map for allergists and mast cell biologists. J Allergy Clin Immunol 2025; 155:1095-1114. [PMID: 39734034 DOI: 10.1016/j.jaci.2024.12.1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
Histamine (C5H9N3, molecular weight 111.15 g/mol) is a well-studied endogenous biogenic amine composed of an imidazole ring attached to an ethylamine side chain. It has a limited half-life of a few minutes within tissues and in circulation. Several cell types including mast cells (MCs), basophils, platelets, histaminergic neurons, and enterochromaffin cells produce varying amounts of histamine using histidine decarboxylase. However, only MCs and basophils have complex mechanisms to pack and store histamine in granules along with other mediators using serglycin and its carried glycosaminoglycan side chains. Relatively low granule pH (∼5.5) supports the binding of stored histamine to heparin, whereas exposure to neutral pH after degranulation weakens the binding and histamine becomes liberated. Histamine exerts multifaceted regulatory biofunctions by engaging its 4 types of heptahelical G protein-coupled receptors (H1R-H4R), which have different expression profiles and functions. MCs express H1R, H2R, and H4R, which gives them a dual role in histamine biology as producers and responsive target cells. Histamine plays a role in a variety of physiologic and pathologic processes such as cell proliferation, differentiation, hematopoiesis, vascular permeability, embryogenesis, tissue regeneration, and wound healing. The emergence of histamine receptor-deficient mouse models and the development of multiple histamine receptor agonists and antagonists have helped researchers better understand these physiologic and pathogenic functions of histamine. We review the biology of histamine with a focus on immunologic aspects and the role of histamine in allergy and MC biology.
Collapse
Affiliation(s)
- Sima Heidarzadeh-Asl
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, RUDN University, Moscow, Russia; Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| | - Per Stahl Skov
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University Hospital, Odense, Denmark; RefLab ApS, Copenhagen, Denmark
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
3
|
McAdams J, Ebott J, Jansen C, Kim C, Maiz D, Ou J, Hanley LC, Cruz PDL, James NE. Neoadjuvant chemotherapy induces phenotypic mast cell changes in high grade serous ovarian cancer. J Ovarian Res 2024; 17:192. [PMID: 39342316 PMCID: PMC11438021 DOI: 10.1186/s13048-024-01516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND High grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy in which patients have still yet to respond meaningfully to clinically available immunotherapies. Hence, novel immune targets are urgently needed. Our past work has identified that mast cells are significantly upregulated at the mRNA level in HGSOC patient tumors following neoadjuvant chemotherapy (NACT) exposure. Therefore, in this current investigation we sought to characterize intratumoral mast cell phenotypic changes as a result of NACT exposure and determine how these adaptations are associated with patient clinical outcomes. METHODS Hematologic immunohistochemistry was employed to determine mast cell levels in 36 matched pre- and post-NACT HGSOC patient tumors. Fluorescent Immunohistochemistry was utilized to identify Tryptase+(carboxypeptidase A3 (CPA3) + mast cells as well as histamine levels in 29 and 20, respectively, matched pre- and post-NACT HGSOC patient tumors. Finally, human immortalized mast cells, LUVA were stimulated with carboplatin and paclitaxel and genomic changes were analyzed by quantitative PCR. RESULTS Hematologic labeled intratumoral mast cells were significantly upregulated in the intraepithelial and stromal regions of the tumor, post-NACT. Lower levels of pre-NACT mast cells were significantly associated with an improved progression-free survival (PFS). Histamine, a marker of mast cell degranulation was similarly upregulated in post-NACT exposed tumors. Through the characterization of mast cell specific proteases Tryptase and CPA3, it was found that Tryptase+/ CPA3 + mast cells were significantly upregulated both in the intraepithelial and stromal compartments of the tumor, while Tryptase + cells were significantly upregulated in the stromal regions of the tumor. Lower post-NACT treated levels with Tryptase+/ CPA3 + cells were significantly associated with improved overall survival (OS) and PFS while higher Tryptase + mast cells were associated with improved OS. Finally, following chemotherapy exposure mast cell activating factors AREG and CCL2 were significantly upregulated while TGFB1, an inhibitor of mast cell activation was downregulated in LUVA cells. CONCLUSIONS Enhanced mast cell numbers, as well as activation and degranulation are a consequence of NACT exposure. Post-NACT mast cells displayed differing associations with survival outcomes that was dependent upon granule classification. Ultimately, mast cells represent a clinically relevant putative HGSOC immune target.
Collapse
Affiliation(s)
- Julia McAdams
- Program in Women's Oncology, Women and Infants Hospital, Providence, RI, USA
| | - Jasmine Ebott
- Program in Women's Oncology, Women and Infants Hospital, Providence, RI, USA
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Warren-Alpert Medical School of Brown University, 200 Chestnut Street, Room 208, Providence, RI, 02903, USA
| | - Corinne Jansen
- Program in Women's Oncology, Women and Infants Hospital, Providence, RI, USA
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Warren-Alpert Medical School of Brown University, 200 Chestnut Street, Room 208, Providence, RI, 02903, USA
| | - Chloe Kim
- School of Public Health, Brown University, Providence, RI, USA
| | - Daniela Maiz
- Department of Pathobiology, Brown University, Providence, RI, USA
| | - Joyce Ou
- Department of Pathology, Women and Infants Hospital, Providence, RI, USA
| | - Linda C Hanley
- Department of Pathology, Women and Infants Hospital, Providence, RI, USA
| | | | - Nicole E James
- Program in Women's Oncology, Women and Infants Hospital, Providence, RI, USA.
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Warren-Alpert Medical School of Brown University, 200 Chestnut Street, Room 208, Providence, RI, 02903, USA.
| |
Collapse
|
4
|
Traina G. Mast Cells in Human Health and Diseases 2.0. Int J Mol Sci 2024; 25:6443. [PMID: 38928149 PMCID: PMC11203736 DOI: 10.3390/ijms25126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
This Special Issue collects some scientific pieces of the multifaceted research on the mast cell (MC), and it intends to highlight the broad spectrum of activity that MCs have, both in physiological conditions and in pathological states, focusing attention on some of them [...].
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via Romana, 06126 Perugia, Italy
| |
Collapse
|
5
|
Schröder SK, Krizanac M, Kim P, Kessel JC, Weiskirchen R. Ovaries of estrogen receptor 1-deficient mice show iron overload and signs of aging. Front Endocrinol (Lausanne) 2024; 15:1325386. [PMID: 38464972 PMCID: PMC10920212 DOI: 10.3389/fendo.2024.1325386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Estrogens are crucial regulators of ovarian function, mediating their signaling through binding to estrogen receptors. The disruption of the estrogen receptor 1 (Esr1) provokes infertility associated with a hemorrhagic, cystic phenotype similar to that seen in diseased or aged ovaries. Our previous study indicated the possibility of altered iron metabolism in Esr1-deficient ovaries showing massive expression of lipocalin 2, a regulator of iron homeostasis. Methods Therefore, we examined the consequences of depleting Esr1 in mouse ovaries, focusing on iron metabolism. For that reason, we compared ovaries of adult Esr1-deficient animals and age-matched wild type littermates. Results and discussion We found increased iron accumulation in Esr1-deficient animals by using laser ablation inductively coupled plasma mass spectrometry. Western blot analysis and RT-qPCR confirmed that iron overload alters iron transport, storage and regulation. In addition, trivalent iron deposits in form of hemosiderin were detected in Esr1-deficient ovarian stroma. The depletion of Esr1 was further associated with an aberrant immune cell landscape characterized by the appearance of macrophage-derived multinucleated giant cells (MNGCs) and increased quantities of macrophages, particularly M2-like macrophages. Similar to reproductively aged animals, MNGCs in Esr1-deficient ovaries were characterized by iron accumulation and strong autofluorescence. Finally, deletion of Esr1 led to a significant increase in ovarian mast cells, involved in iron-mediated foam cell formation. Given that these findings are characteristics of ovarian aging, our data suggest that Esr1 deficiency triggers mechanisms similar to those associated with aging.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | | | | | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| |
Collapse
|