1
|
Jurado-Martín I, Tomás-Cortázar J, Rezk N, Hou Y, Saínz-Mejías M, Bruce R, Startseva M, Ma C, McClean S. The novel antigen, lipopolysaccharide export protein LptH, protects mice against Pseudomonas aeruginosa acute pneumonia in monovalent and multivalent vaccines. Vaccine 2025; 56:127145. [PMID: 40262371 DOI: 10.1016/j.vaccine.2025.127145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that is a leading cause of morbidity and mortality worldwide in susceptible patients, particularly in those with respiratory disorders. The rising prevalence of multidrug-resistant strains and the failure of previous P. aeruginosa vaccine candidates in clinical trials highlight the urgent need to investigate novel vaccine antigens. In this study, we evaluated the protective potential of two antigen candidates, LptH and OprM, previously identified based on their involvement in host-cell attachment in a murine acute pneumonia model. Recombinant Escherichia coli BL21 clones overexpressing these proteins showed 8.8- and 3.5-fold increased attachment to 16HBE14o- cells in vitro, confirming their role in host-cell attachment. Immunisation with rLptH significantly reduced bacterial burden in the lungs by 1.12 log10 CFU and improved animal welfare scores compared to adjuvant-only controls. Serological and immunophenotyping analyses revealed that the monovalent rLptH vaccine stimulated antigen-specific IgG1 and IgG2c isotype production, and enhanced IFN-γ and IL-17 recall responses in the spleen. Moreover, a trivalent vaccine comprising rLptH and two other P. aeruginosa antigens, rFtsZ, and rOpmH, achieved a 2.33 log10 CFU reduction in lung bacterial burden, and 1.85 log10 CFU reduction in dissemination. These encouraging findings support the potential of LptH as a promising antigen for the development of a protective multivalent vaccine against P. aeruginosa infections.
Collapse
Affiliation(s)
- Irene Jurado-Martín
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Nouran Rezk
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Yueran Hou
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maite Saínz-Mejías
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rhys Bruce
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maryna Startseva
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chaoying Ma
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Oh DK, Jo DM, Kim NG, Cho KJ, Jeong GJ, Tabassum N, Jung WK, Khan F, Kim YM. Eisenia bicyclis-Mediated Gold Nanoparticles Exhibit Antibiofilm and Antivirulence Activities Against Pseudomonas aeruginosa and Staphylococcus aureus. Antibiotics (Basel) 2025; 14:182. [PMID: 40001425 PMCID: PMC11851435 DOI: 10.3390/antibiotics14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Brown algae, particularly Eisenia bicyclis, produce various bioactive chemicals with significant application potential in the food, cosmetics, and pharmaceutical industries. This study aimed to evaluate the antibacterial, antibiofilm, and antivirulence properties of the ethyl acetate fraction (EA) of E. bicyclis and its synthesized gold nanoparticles (EA-AuNPs), with a focus on their potential applications against both Gram-positive and Gram-negative bacteria. Methods: The bioactive component in the ethyl acetate fraction was identified using a gas chromatography-mass spectroscopy (GC-MS) device and a liquid chromatography-mass spectrometer/mass spectrometry (LC-MS) system. The crystal violet method was utilized to evaluate the biofilm inhibition experiments. Several instruments, including dynamic light scattering, Fourier transform infrared, X-ray diffraction, field emission transmission electron microscopy, and energy-dispersive spectroscopy, were employed to completely characterize the produced EA-AuNPs. The cytotoxicity of the EA-AuNPs was determined using the MTT assay, and the expression of genes linked with biofilm and virulence in Pseudomonas aeruginosa and Staphylococcus aureus was investigated using real-time polymerase chain reaction (RT-PCR). Results: Various bioactive compounds were identified from the EA using GC-MS and LC-MS, including fatty acids and phlorotannins such as eckol, dieckol, 6,6'-bieckol, and phlorofucofuroeckol in high amounts, highlighting EA as a phlorotannin-rich fraction. The EA also demonstrated significant antibiofilm activity, with 79.86% inhibition at 512 μg/mL against P. aeruginosa and 87.00% at 64 μg/mL against S. aureus. EA was then used in the synthesis of gold nanoparticles (AuNPs) to improve their stability and safety. The synthesized EA-AuNPs were determined to have an average size of 165.04 nm, with a zeta potential of -29.86 mV, indicating good stability. In antibiofilm activity assays, EA-AuNPs demonstrated 45.76% inhibition against P. aeruginosa at 1024 μg/mL and 44.64% inhibition against S. aureus at 128 μg/mL. At sub-MIC levels, EA-AuNPs significantly inhibited biofilm formation and virulence factors, including the motility of P. aeruginosa and staphyloxanthin synthesis in S. aureus. The RT-PCR analysis revealed the downregulation of key genes involved in biofilm formation and virulence in P. aeruginosa and S. aureus. Conclusions: These findings highlight the potential of E. bicyclis solvent-soluble extracts and EA-AuNPs as effective antibacterial, antibiofilm, and antivirulence agents, with significant application potential in the pharmaceutical and food industries. To the best of our knowledge, this is the first report of antibiofilm activity against both Gram-positive and Gram-negative bacteria using EA-AuNPs.
Collapse
Affiliation(s)
- Do Kyung Oh
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (D.K.O.); (K.-J.C.); (G.-J.J.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.-G.K.); (N.T.); (W.-K.J.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea;
| | - Nam-Gyun Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.-G.K.); (N.T.); (W.-K.J.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (D.K.O.); (K.-J.C.); (G.-J.J.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.-G.K.); (N.T.); (W.-K.J.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (D.K.O.); (K.-J.C.); (G.-J.J.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.-G.K.); (N.T.); (W.-K.J.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.-G.K.); (N.T.); (W.-K.J.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.-G.K.); (N.T.); (W.-K.J.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.-G.K.); (N.T.); (W.-K.J.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (D.K.O.); (K.-J.C.); (G.-J.J.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.-G.K.); (N.T.); (W.-K.J.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Mirzaei R, Campoccia D, Ravaioli S, Arciola CR. Emerging Issues and Initial Insights into Bacterial Biofilms: From Orthopedic Infection to Metabolomics. Antibiotics (Basel) 2024; 13:184. [PMID: 38391570 PMCID: PMC10885942 DOI: 10.3390/antibiotics13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial biofilms, enigmatic communities of microorganisms enclosed in an extracellular matrix, still represent an open challenge in many clinical contexts, including orthopedics, where biofilm-associated bone and joint infections remain the main cause of implant failure. This study explores the scenario of biofilm infections, with a focus on those related to orthopedic implants, highlighting recently emerged substantial aspects of the pathogenesis and their potential repercussions on the clinic, as well as the progress and gaps that still exist in the diagnostics and management of these infections. The classic mechanisms through which biofilms form and the more recently proposed new ones are depicted. The ways in which bacteria hide, become impenetrable to antibiotics, and evade the immune defenses, creating reservoirs of bacteria difficult to detect and reach, are delineated, such as bacterial dormancy within biofilms, entry into host cells, and penetration into bone canaliculi. New findings on biofilm formation with host components are presented. The article also delves into the emerging and critical concept of immunometabolism, a key function of immune cells that biofilm interferes with. The growing potential of biofilm metabolomics in the diagnosis and therapy of biofilm infections is highlighted, referring to the latest research.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
5
|
Arciola CR, Ravaioli S, Mirzaei R, Dolzani P, Montanaro L, Daglia M, Campoccia D. Biofilms in Periprosthetic Orthopedic Infections Seen through the Eyes of Neutrophils: How Can We Help Neutrophils? Int J Mol Sci 2023; 24:16669. [PMID: 38068991 PMCID: PMC10706149 DOI: 10.3390/ijms242316669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Despite advancements in our knowledge of neutrophil responses to planktonic bacteria during acute inflammation, much remains to be elucidated on how neutrophils deal with bacterial biofilms in implant infections. Further complexity transpires from the emerging findings on the role that biomaterials play in conditioning bacterial adhesion, the variety of biofilm matrices, and the insidious measures that biofilm bacteria devise against neutrophils. Thus, grasping the entirety of neutrophil-biofilm interactions occurring in periprosthetic tissues is a difficult goal. The bactericidal weapons of neutrophils consist of the following: ready-to-use antibacterial proteins and enzymes stored in granules; NADPH oxidase-derived reactive oxygen species (ROS); and net-like structures of DNA, histones, and granule proteins, which neutrophils extrude to extracellularly trap pathogens (the so-called NETs: an allusive acronym for "neutrophil extracellular traps"). Neutrophils are bactericidal (and therefore defensive) cells endowed with a rich offensive armamentarium through which, if frustrated in their attempts to engulf and phagocytose biofilms, they can trigger the destruction of periprosthetic bone. This study speculates on how neutrophils interact with biofilms in the dramatic scenario of implant infections, also considering the implications of this interaction in view of the design of new therapeutic strategies and functionalized biomaterials, to help neutrophils in their arduous task of managing biofilms.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (S.R.); (D.C.)
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Paolo Dolzani
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Lucio Montanaro
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (S.R.); (D.C.)
| |
Collapse
|