1
|
Sangiorgi S, Albertini B, Bertoni S, Passerini N. An Overview on the Role of Ionic Liquids and Deep Eutectic Solvents in Oral Pharmaceuticals. Pharmaceutics 2025; 17:300. [PMID: 40142964 PMCID: PMC11946670 DOI: 10.3390/pharmaceutics17030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Over the past twenty years, ionic liquids (ILs) and deep eutectic solvents (DESs) have gained recognition across various fields, including catalysis, extraction and purification, materials science, and biotechnology. Notably, the use of ILs and DESs in pharmaceutical research, especially in drug delivery, has seen remarkable expansion over the past decade. This review offers a comprehensive analysis of ILs and DESs specifically designed for the oral administration of drugs having unfavorable biopharmaceutical properties. The classification and characteristics of ILs and DESs, along with their newer natural (Bio-ILs and NaDESs) and therapeutic subcategories (API-ILs and TheDESs) are outlined. Additionally, a further subgroup of ILs, known as surface active ionic liquids (SAILs), is described. Then, a detailed examination of the available manufacturing methods in a sustainable, time-consuming, and scalable perspective, and toxicity concerns in relation to their subdivision are evaluated. Finally, their specific applications in oral drug delivery, whether used as neat solvents or converted into administrable dosage forms, are analyzed and discussed. Despite the significant advancements in recent years regarding the use of these solvents in oral drug delivery, there are still many aspects that need further investigation. These include their interaction with biological systems (gastrointestinal fluids and mucosa), their long-term stability, and the development of effective drug delivery systems.
Collapse
Affiliation(s)
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, I-40127 Bologna, Italy; (S.S.); (S.B.); (N.P.)
| | | | | |
Collapse
|
2
|
Vicente FA, Tkalec N, Likozar B. Responsive deep eutectic solvents: mechanisms, applications and their role in sustainable chemistry. Chem Commun (Camb) 2025; 61:1002-1013. [PMID: 39661071 DOI: 10.1039/d4cc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In an era so focused on sustainability, it is important to improve chemical processes by developing and using more environmentally friendly solvents and technologies. Deep eutectic solvents (DES) have proven to be a promising replacement for conventional solvents. In recent years, a new type of DES has emerged that responds to various stimuli. These responsive DES (RDES) may offer all the advantages of DES while allowing the recycling and reuse of solvents. As such, RDES can further contribute to a greener future. This review provides an overview of the diverse types of RDES, their switching mechanisms and their application in several fields. Lastly, it offers a critical perspective on current shortcomings and prospects.
Collapse
Affiliation(s)
- Filipa A Vicente
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Nuša Tkalec
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Yıldırım M, Bişgin AT. Simultaneous deep eutectic solvent based microextraction of Allura Red and Brilliant Blue in violet-purple foodstuffs. J Food Compost Anal 2024; 134:106522. [DOI: 10.1016/j.jfca.2024.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Swebocki T, Kocot AM, Barras A, Arellano H, Bonnaud L, Haddadi K, Fameau AL, Szunerits S, Plotka M, Boukherroub R. Comparison of the Antibacterial Activity of Selected Deep Eutectic Solvents (DESs) and Deep Eutectic Solvents Comprising Organic Acids (OA-DESs) Toward Gram-Positive and Gram-Negative Species. Adv Healthc Mater 2024; 13:e2303475. [PMID: 38310366 DOI: 10.1002/adhm.202303475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/30/2023] [Indexed: 02/05/2024]
Abstract
Deep eutectic solvents (DESs) have been intensively investigated in recent years for their antibacterial properties, with DESs that comprise organic acids (OA-DESs) showing promising antibacterial action. However a majority of the reports focused only on a limited number strains and techniques, which is not enough to determine the antibacterial potential of a substance. To bridge this gap, the antibacterial activity of classical DESs and OA-DESs is assessed on twelve Gram-negative and Gram-positive bacteria strains, with some of them exhibiting specific resistance toward antibiotics. The investigated formulations of OA-DESs comprise glycolic, malic, malonic, and oxalic acids as representatives of this group. Using a range of microbiological assays as well as physicochemical characterization methods, a major difference of the effectiveness between the two groups is demonstrated, with OA-DESs exhibiting, as expected, greater antibacterial effectiveness than classical DESs. Most interestingly, slight differences in the minimum inhibitory and bactericidal concentration values as well as time-kill kinetics profiles are observed between Gram-positive and Gram-negative strains. Transmission electron microscopy analysis reveals the effect of the treatment of the bacteria with the representatives of both groups of DESs, which allows us to better understand the possible mechanism-of-action of these novel materials.
Collapse
Affiliation(s)
- Tomasz Swebocki
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Aleksandra M Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Alexandre Barras
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Helena Arellano
- Université de Lille, CNRS, INRAe, UMR 8207 - UMET - Unité Matériaux et Transformations, Centrale Lille, Lille, 59000, France
| | - Leila Bonnaud
- Laboratory of Polymeric and Composite Materials, Materia Nova Innovation Center in Materials of the University of Mons, 3 Avenue Nicolas Copernic, Mons, B-7000, Belgium
| | - Kamel Haddadi
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Anne-Laure Fameau
- Université de Lille, CNRS, INRAe, UMR 8207 - UMET - Unité Matériaux et Transformations, Centrale Lille, Lille, 59000, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| |
Collapse
|
5
|
Kapre S, Palakurthi SS, Jain A, Palakurthi S. DES-igning the future of drug delivery: A journey from fundamentals to drug delivery applications. J Mol Liq 2024; 400:124517. [DOI: 10.1016/j.molliq.2024.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
6
|
Wada N, Hara T, Takahashi K. Facile Separation of Acetic Acid from 1-Ethyl-3-methylimidazolium Acetate Ionic Liquid with the Aid of a Protic Solvent. J Phys Chem B 2024; 128:2755-2761. [PMID: 38462722 PMCID: PMC10962345 DOI: 10.1021/acs.jpcb.3c07225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
1-Ethyl-3-methylimidazolium acetate (EmimAc), an excellent solvent for cellulosic biomass, is expected to be utilized in chemical conversion, such as in biomass acetylation with acetic anhydride. The corresponding carboxylic acid, acetic acid (AcH), is quantitatively generated as a byproduct and should be separated from EmimAc for recycling. However, the strong interaction between EmimAc and AcH makes their separation difficult under moderate conditions. This study examined the efficacy of protic solvents in distillation and extraction to weaken this interaction through solvation or hydrogen-bonding interactions. The separation efficiency of AcH from EmimAc via distillation increased as the boiling point of the protic solvent increased. Water addition was more effective than the addition of alcohols with boiling points similar to those of water such as 1-propanol and 2-butanol. Furthermore, the favorable effect of water addition on the extraction of AcH was confirmed using common organic solvents, such as diisopropyl ether, diethyl ether, and ethyl acetate. The partition coefficient (α) of AcH between the aqueous and organic phases increased with an increasing dielectric constant of the organic solvent, whereas the α value of EmimAc decreased. Repeated treatments in both distillation and extraction facilitated the complete separation of AcH from EmimAc.
Collapse
Affiliation(s)
- Naoki Wada
- Faculty
of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takahiro Hara
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Takahashi
- Faculty
of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|