1
|
Kalinkovich A, Livshits G. The cross-talk between the cGAS-STING signaling pathway and chronic inflammation in the development of musculoskeletal disorders. Ageing Res Rev 2025; 104:102602. [PMID: 39612990 DOI: 10.1016/j.arr.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Musculoskeletal disorders (MSDs) comprise diverse conditions affecting bones, joints, and muscles, leading to pain and loss of function, and are one of the most prevalent and major global health concerns. One of the hallmarks of MSDs is DNA damage. Once accumulated in the cytoplasm, the damaged DNA is sensed by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, which triggers the induction of type I interferons and inflammatory cytokines. Thus, this pathway connects the musculoskeletal and immune systems. Inhibitors of cGAS or STING have shown promising therapeutic effects in the pre-clinical models of several MSDs. Systemic, chronic, low-grade inflammation (SCLGI) underlies the development and maintenance of many MSDs. Failure to resolve SCLGI has been hypothesized to play a critical role in the development of chronic diseases, suggesting that the successful resolution of SCLGI will result in the alleviation of their related symptomatology. The process of inflammation resolution is feasible by specialized pro-resolving mediators (SPMs), which are enzymatically generated from dietary essential polyunsaturated fatty acids (PUFAs). The supplementation of SPMs or their stable, small-molecule mimetics and receptor agonists has revealed beneficial effects in inflammation-related animal models, including arthropathies, osteoporosis, and muscle dystrophy, suggesting a translational potential in MSDs. In this review, we substantiate the hypothesis that the use of cGAS-STING signaling pathway inhibitors together with SCLG-resolving compounds may serve as a promising new therapeutic approach for MSDs.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel; Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
2
|
Sirit IS, Peek RM. Decoding the Ability of Helicobacter pylori to Evade Immune Recognition and Cause Disease. Cell Mol Gastroenterol Hepatol 2025; 19:101470. [PMID: 39889829 PMCID: PMC11946503 DOI: 10.1016/j.jcmgh.2025.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Helicobacter pylori (H pylori) successfully and chronically colonizes the gastric mucosa of approximately 43% of the world's population. Infection with this organism is the strongest known risk factor for the development of gastric cancer, and disease development is dependent on several interactive components. One H pylori determinant that augments cancer risk is the strain-specific cag type IV secretion system, which not only translocates a pro-inflammatory and oncogenic protein, CagA, into host cells but also DNA, peptidoglycan, and a lipopolysaccharide intermediate, heptose-1,7-bisphosphate. However, cognate interactions between certain microbial and host constituents can also attenuate pro-inflammatory responses, and H pylori harbors multiple effectors that function differently than the respective counterparts in other mucosal pathogens. In this review, we discuss current data related to mechanisms utilized by H pylori to evade the immune response, sustain its longevity in the host, and further disease progression, as well as implications for developing targeted, immune-based eradication strategies.
Collapse
Affiliation(s)
- Isabella S Sirit
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Molecular Pathology and Immunology Training Program, Vanderbilt University, Nashville, Tennessee
| | - Richard M Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
3
|
Zhang M, Wu C, Lu D, Wang X, Shang G. cGAS-STING: mechanisms and therapeutic opportunities. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2808-3. [PMID: 39821837 DOI: 10.1007/s11427-024-2808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
The cGAS-STING pathway plays a crucial role in the innate immune system by detecting mislocalized double-stranded DNA (dsDNA) in the cytoplasm and triggering downstream signal transduction. Understanding the mechanisms by which cGAS and STING operate is vital for gaining insights into the biology of this pathway. This review provides a detailed examination of the structural features of cGAS and STING proteins, with a particular emphasis on their activation and inhibition mechanisms. We also discuss the novel discovery of STING functioning as an ion channel. Furthermore, we offer an overview of key agonists and antagonists of cGAS and STING, shedding light on their mechanisms of action. Deciphering the molecular intricacies of the cGAS-STING pathway holds significant promise for the development of targeted therapies aimed at maintaining immune homeostasis within both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Defen Lu
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Guijun Shang
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
4
|
Nakamura M, Ohoka N, Shibata N, Inoue T, Tsuji G, Demizu Y. Development of STING degrader with double covalent ligands. Bioorg Med Chem Lett 2024; 102:129677. [PMID: 38408510 DOI: 10.1016/j.bmcl.2024.129677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Stimulator of interferon genes (STING), a homodimeric membrane receptor localized in the endoplasmic reticulum, plays a pivotal role in signaling innate immune responses. Inhibitors and proteolysis-targeting chimeras (PROTACs) targeting STING are promising compounds for addressing autoinflammatory and autoimmune disorders. In this study, we used a minimal covalent handle recently developed as the ligand portion of an E3 ligase. The engineered STING degrader with a low molecular weight compound covalently binds to STING and E3 ligase. Degrader 2 showed sustained STING degradation activity at lower concentrations (3 µM, 48 h, about 75 % degradation) compared to a reported STING PROTAC, SP23. This discovery holds significance for its potential in treating autoinflammatory and autoimmune diseases, offering promising avenues for developing more efficacious STING-targeted therapies.
Collapse
Affiliation(s)
- Miki Nakamura
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1, Tsushimanaka, Kita 700-8530, Japan; Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Yosuke Demizu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1, Tsushimanaka, Kita 700-8530, Japan; Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
5
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|