1
|
Kabdy H, Abdelmounaim B, Aitbaba A, Hajar A, Yasmine J, Oufquir S, Agouram F, Laaradraoui J, Aboufatima R, Belbachir A, Garzoli S, Chait A. Moroccan Cannabis sativa essential oil attenuates peripheral neuropathic pain induced by chronic sciatic nerve constriction injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119486. [PMID: 39947371 DOI: 10.1016/j.jep.2025.119486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa has been widely used in traditional medicine for its therapeutic properties. However, in Morocco, the ethnobotanical applications of Cannabis sativa, especially its essential oils, are underexplored. This study investigates, for the first time, the effects of Moroccan Cannabis sativa essential oil on peripheral neuropathic pain. MATERIALS AND METHODS Peripheral neuropathic pain was induced in mice through sciatic nerve injury. The mice were treated daily with cannabis essential oil for 21 days. Behavioral tests were conducted on days 1, 7, 14, and 21 to evaluate thermal, mechanical, and cold sensitivity. The essential oil's chemical composition was analyzed using gas chromatography-mass spectrometry (GC/MS). RESULTS The main constituents of the essential oil were (E)-caryophyllene (41.59%) and α-humulene (14%). Daily treatment with the essential oil significantly reduced pain sensitivity and improved functional and histological recovery over time. These effects are linked to the activity of the dominant terpenoids in the oil. CONCLUSION Moroccan Cannabis sativa essential oil shows significant therapeutic potential for managing peripheral neuropathic pain. By enhancing recovery and alleviating pain symptoms, it offers a promising alternative for treating chronic pain caused by nerve injuries.
Collapse
Affiliation(s)
- Hamid Kabdy
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080 Marrakech, Morocco.
| | - Baslam Abdelmounaim
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080 Marrakech, Morocco.
| | - Abdelfatah Aitbaba
- Biology, Health and Ecology Laboratory, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Azraida Hajar
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080 Marrakech, Morocco.
| | - Jaouhari Yasmine
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080 Marrakech, Morocco.
| | - Sara Oufquir
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080 Marrakech, Morocco.
| | - Fatimazahra Agouram
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080 Marrakech, Morocco.
| | - Jawad Laaradraoui
- Laboratory of Physiopathology, Genetic Molecular and Biotechnology, Faculty of Sciences, Aïn Chock, Hassan II University, Casablanca, Morocco.
| | - Rachida Aboufatima
- Laboratory of Genie Biologic, Sultan Moulay Slimane University, Faculty of Sciences and Technics, Beni Mellal, Morocco.
| | - Anass Belbachir
- Morpho-Science Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayad University, 40000, Marrakech, Morocco.
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185, Rome, Italy.
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080 Marrakech, Morocco.
| |
Collapse
|
2
|
Baslam A, Kabdy H, Chait Y, Azraida H, El Yazouli L, Aboufatima R, Chait A, Baslam M. Gut Microbiome-Mediated Mechanisms in Alleviating Opioid Addiction with Aqueous Extract of Anacyclus pyrethrum. Biomedicines 2024; 12:1152. [PMID: 38927359 PMCID: PMC11200529 DOI: 10.3390/biomedicines12061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating rates of morbidity and mortality associated with opioid use disorder (OUD) have spurred a critical need for improved treatment outcomes. This study aimed to investigate the impact of prolonged exposure to Fentanyl, a potent opioid, on behavior, biochemical markers, oxidative stress, and the composition of the gut microbiome. Additionally, we sought to explore the therapeutic potential of Anacyclus pyrethrum in mitigating the adverse effects of Fentanyl withdrawal. The study unveiled that chronic Fentanyl administration induced a withdrawal syndrome characterized by elevated cortisol levels (12.09 mg/mL, compared to 6.3 mg/mL for the control group). This was accompanied by heightened anxiety, indicated by a reduction in time spent and entries made into the open arm in the Elevated Plus Maze Test, as well as depressive-like behaviors, manifested through increased immobility time in the Forced Swim Test. Additionally, Fentanyl exposure correlated with decreased gut microbiome density and diversity, coupled with heightened oxidative stress levels, evidenced by elevated malondialdehyde (MDA) and reduced levels of catalase (CAT) and superoxide dismutase (SOD). However, both post- and co-administration of A. pyrethrum exhibited substantial improvements in these adverse effects, effectively alleviating symptoms associated with OUD withdrawal syndrome and eliciting positive influences on gut microbiota. In conclusion, this research underscores the therapeutic potential of A. pyrethrum in managing Fentanyl withdrawal symptoms. The findings indicate promising effects in alleviating behavioral impairments, reducing stress, restoring gut microbiota, and mitigating oxidative stress, offering valuable insights for addressing the challenges of OUD treatment.
Collapse
Affiliation(s)
- Abdelmounaim Baslam
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Hamid Kabdy
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Yassine Chait
- Agadir Souss Massa University Hospital, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir 80000, Morocco
| | - Hajar Azraida
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Loubna El Yazouli
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Marouane Baslam
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakech 40000, Morocco
- Laboratory of Biochemistry, Department of Applied Biological Chemistry, Faculty of Agriculture, University of Niigata, Niigata 950-2181, Japan
- GrowSmart, Seoul 07516, Republic of Korea
| |
Collapse
|
3
|
Kabdy H, Azraida H, Agouram F, Oufquir S, Laadraoui J, Baslam A, Aitbaba A, Ouazzani ME, Elyazouli L, Aboufatima R, Garzoli S, Chait A. Antiarthritic and Anti-Inflammatory Properties of Cannabis sativa Essential Oil in an Animal Model. Pharmaceuticals (Basel) 2023; 17:20. [PMID: 38256854 PMCID: PMC10819254 DOI: 10.3390/ph17010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Arthritis and inflammatory conditions require effective therapies, but conventional drugs have side effects. This study explored Cannabis sativa L. essential oil (CSEO) as a safer alternative. A chemical characterization of EO conducted via GC/MS showed the presence of sesquiterpene hydrocarbons (67.63%), oxygenated sesquiterpenes (25.91%), and oxygenated monoterpenes (0.99%). The study used three established inflammation induction tests: xylene-induced ear swelling, carrageenan-induced paw inflammation, and inflammation in the paw induced by Freund's complete adjuvant (CFA). Xylene triggered acute inflammation in the ear, while carrageenan-induced acute inflammatory responses through edema and immune-cell recruitment in the paw. CFA-induced arthritis simulated chronic inflammatory conditions. The obtained results demonstrated that treatment with CSEO significantly reduced ear weight in the xylene-induced ear-swelling test, indicating potential inhibition of neutrophil accumulation. In the carrageenan-induced paw inflammation test, CSEO reduced paw volume, suggesting interference with edema formation and leukocyte migration. In the CFA-induced paw inflammation test, CSEO decreased contralateral paw volume, restored body weight, and reduced C-reactive protein levels. Conclusion: this study provides compelling evidence supporting the antiarthritic and anti-inflammatory effects of CSEO. The findings indicate the therapeutic value of EO in the management of arthritis and inflammatory diseases while highlighting the need for further in-depth research to study the molecular mechanisms and validate their safety and efficacy for clinical applications. Preliminary data from this study suggests encouraging prospects for advancing the treatment and prevention of inflammation.
Collapse
Affiliation(s)
- Hamid Kabdy
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco; (H.K.); (H.A.); (F.A.); (S.O.); (A.B.); (A.A.); (L.E.); (A.C.)
| | - Hajar Azraida
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco; (H.K.); (H.A.); (F.A.); (S.O.); (A.B.); (A.A.); (L.E.); (A.C.)
| | - Fatimzahra Agouram
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco; (H.K.); (H.A.); (F.A.); (S.O.); (A.B.); (A.A.); (L.E.); (A.C.)
| | - Sara Oufquir
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco; (H.K.); (H.A.); (F.A.); (S.O.); (A.B.); (A.A.); (L.E.); (A.C.)
| | - Jawad Laadraoui
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca 20470, Morocco;
| | - Abdelmounaim Baslam
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco; (H.K.); (H.A.); (F.A.); (S.O.); (A.B.); (A.A.); (L.E.); (A.C.)
| | - Abdelfatah Aitbaba
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco; (H.K.); (H.A.); (F.A.); (S.O.); (A.B.); (A.A.); (L.E.); (A.C.)
| | - Meryem El Ouazzani
- Anatomic Pathology Laboratory, FMPM-UCA-CHU Mohamed VI, Marrakech 40000, Morocco;
| | - Loubna Elyazouli
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco; (H.K.); (H.A.); (F.A.); (S.O.); (A.B.); (A.A.); (L.E.); (A.C.)
| | - Rachida Aboufatima
- Laboratory of Genie Biologic, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal 23040, Morocco;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco; (H.K.); (H.A.); (F.A.); (S.O.); (A.B.); (A.A.); (L.E.); (A.C.)
| |
Collapse
|
4
|
Baslam A, Azraida H, Aboufatima R, Ait-El-Mokhtar M, Dilagui I, Boussaa S, Chait A, Baslam M. Trihexyphenidyl Alters Its Host's Metabolism, Neurobehavioral Patterns, and Gut Microbiome Feedback Loop-The Modulating Role of Anacyclus pyrethrum. Antioxidants (Basel) 2023; 13:26. [PMID: 38275646 PMCID: PMC10812446 DOI: 10.3390/antiox13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Trihexyphenidyl (THP)-a synthetic anticholinergic medication used to manage parkinsonism and extrapyramidal symptoms-has gained significant clinical recognition. However, there is a critical gap in understanding its withdrawal effects. This study investigates the intricate interplay between gut microbiota and oxidative stress during THP withdrawal. Furthermore, it explores the therapeutic potential of Anacyclus pyrethrum (AEAP) for alleviating the associated adverse effects. This comprehensive research combines behavioral tests, biochemical analysis, gut microbiome assessment utilizing matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and oxidative stress measures. The results reveal that the chronic administration of THP leads to severe withdrawal syndrome, marked by heightened anxiety, depressive-like behaviors, increased cortisol levels, elevated oxidative stress, and gut dysbiosis. However, the administration of AEAP alongside THP shows a significant capacity to mitigate these deleterious effects. Co-treatment and post-treatment with AEAP increased bacterial density and diversity, promoting the proliferation of beneficial bacteria associated with improved gut health. Furthermore, AEAP administration reduced cortisol levels and exhibited potent antioxidant properties, effectively countering the THP-induced oxidative damage. This study highlights the withdrawal effects of THP and underscores the therapeutic potential of AEAP for managing these symptoms. The findings reveal its promising effects in alleviating behavioral and biochemical impairments, reducing oxidative stress, and restoring gut microbiota, which could significantly impact the clinical management of THP withdrawal and potentially extend to other substance withdrawal scenarios.
Collapse
Affiliation(s)
- Abdelmounaim Baslam
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.)
| | - Hajar Azraida
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.)
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 20000, Morocco;
| | - Ilham Dilagui
- Laboratory of Microbiology, University Hospital Mohamed VI, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Samia Boussaa
- Higher Institute of Nursing and Health Techniques, Ministry of Health and Social Protection, Rabat 10000, Morocco;
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Department of Applied Biological Chemistry, Faculty of Agriculture, University of Niigata, Niigata 950-2181, Japan
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakech 40000, Morocco
| |
Collapse
|
5
|
Hu Q, Hou S, Xiong B, Wen Y, Wang J, Zeng J, Ma X, Wang F. Therapeutic Effects of Baicalin on Diseases Related to Gut-Brain Axis Dysfunctions. Molecules 2023; 28:6501. [PMID: 37764277 PMCID: PMC10535911 DOI: 10.3390/molecules28186501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The gut-brain axis is an active area of research. Several representative diseases, including central nervous system disorders (Alzheimer's disease, Parkinson's disease, and depression), metabolic disorders (obesity-related diseases), and intestinal disorders (inflammatory bowel disease and dysbiosis), are associated with the dysfunctional gut-brain axis. Baicalin, a bioactive flavonoid extracted from Scutellaria baicalensis, is reported to exert various pharmacological effects. This narrative review summarizes the molecular mechanisms and potential targets of baicalin in disorders of the gut-brain axis. Baicalin protects the central nervous system through anti-neuroinflammatory and anti-neuronal apoptotic effects, suppresses obesity through anti-inflammatory and antioxidant effects, and alleviates intestinal disorders through regulatory effects on intestinal microorganisms and short-chain fatty acid production. The bioactivities of baicalin are mediated through the gut-brain axis. This review comprehensively summarizes the regulatory role of baicalin in gut-brain axis disorders, laying a foundation for future research, although further confirmatory basic research is required.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Shuyu Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Baoyi Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Jundong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Fang Wang
- Department of Pharmacy, Medical Supplies Center of PLA General of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
6
|
Kargbo RB. Microbiome: The Next Frontier in Psychedelic Renaissance. J Xenobiot 2023; 13:386-401. [PMID: 37606422 PMCID: PMC10443327 DOI: 10.3390/jox13030025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
The psychedelic renaissance has reignited interest in the therapeutic potential of psychedelics for mental health and well-being. An emerging area of interest is the potential modulation of psychedelic effects by the gut microbiome-the ecosystem of microorganisms in our digestive tract. This review explores the intersection of the gut microbiome and psychedelic therapy, underlining potential implications for personalized medicine and mental health. We delve into the current understanding of the gut-brain axis, its influence on mood, cognition, and behavior, and how the microbiome may affect the metabolism and bioavailability of psychedelic substances. We also discuss the role of microbiome variations in shaping individual responses to psychedelics, along with potential risks and benefits. Moreover, we consider the prospect of microbiome-targeted interventions as a fresh approach to boost or modulate psychedelic therapy's effectiveness. By integrating insights from the fields of psychopharmacology, microbiology, and neuroscience, our objective is to advance knowledge about the intricate relationship between the microbiome and psychedelic substances, thereby paving the way for novel strategies to optimize mental health outcomes amid the ongoing psychedelic renaissance.
Collapse
Affiliation(s)
- Robert B Kargbo
- Usona Institute, 2800 Woods Hollow Rd., Madison, WI 53711-5300, USA
| |
Collapse
|