1
|
Wang S, Zhou L, Pu W, Dai J, Cao S. Shared and unique genes and pathways between neuropathic and inflammatory pain assays. Brain Res 2025; 1857:149614. [PMID: 40187516 DOI: 10.1016/j.brainres.2025.149614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Current studies mostly concentrate on behavioral differences and have not yet systematically elucidated the molecular distinctions among various chronic pain models. METHODS To identify the similarities and differences in gene expression among mice of three kinds of pain models, i.e., spared nerve injury (SNI) model, chronic constriction injury of the sciatic nerve (CCI) model, and the complete Freund's adjuvant-induced chronic inflammatory pain (CFA) model. The lumbar enlargement segments (L5-L6) were collected. Total mRNA was extracted for RNA sequencing. The differentially expressed genes were analyzed by bioinformatics, including GO analysis, KEGG analysis, and PPI network to explore the functions. RESULTS Commonalities and significant variations in gene expression were observed among the three pain models. Compared with Sham, there were 60 shared differential genes among the three models, which were mainly involved in oxidative phosphorylation-related biological process (e.g., mt-Nd1). Compared with CCI, SNI upregulated genes were associated with inflammation response (e.g., Ifi204, Ifi27), while downregulated genes were linked to microtubule-based movement (e.g., Dnah7b, Hcmn1); When compared with SNI, CFA upregulated genes were related to axon development (e. g., Oprm1, Gucy1a2, Syn3), whereas downregulated genes were associated with oxidative phosphorylation (e. g., Rpl41, Rpl21); In contrast to CCI, CFA upregulated genes pertained to axon development (e. g., Zbtb16), while downregulated genes were connected to oxidative phosphorylation (e. g., Cyp3a13). CONCLUSIONS The three widely employed chronic pain models exhibit both similarities and distinctions, and genes that vary across all three models may serve as potential targets for chronic pain research.
Collapse
Affiliation(s)
- Shuxian Wang
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, 149 Dalian Street, Zunyi 563000, Guizhou, China
| | - Lingji Zhou
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, 149 Dalian Street, Zunyi 563000, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Weiyu Pu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, 149 Dalian Street, Zunyi 563000, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jiajia Dai
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, 149 Dalian Street, Zunyi 563000, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Song Cao
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, 149 Dalian Street, Zunyi 563000, Guizhou, China; Department of Pain Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China; Dongguan Key Laboratory of Anesthesia and Organ Protection, Dongguan 523059, Guangdong, China.
| |
Collapse
|
2
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
3
|
Tiwari N, Qiao LY. Sex Differences in Visceral Pain and Comorbidities: Clinical Outcomes, Preclinical Models, and Cellular and Molecular Mechanisms. Cells 2024; 13:834. [PMID: 38786056 PMCID: PMC11119472 DOI: 10.3390/cells13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sexual dimorphism of visceral pain has been documented in clinics and experimental animal models. Aside from hormones, emerging evidence suggests the sex-differential intrinsic neural regulation of pain generation and maintenance. According to the International Association for the Study of Pain (IASP) and the American College of Gastroenterology (ACG), up to 25% of the population have visceral pain at any one time, and in the United States 10-15 percent of adults suffer from irritable bowel syndrome (IBS). Here we examine the preclinical and clinical evidence of sex differences in visceral pain focusing on IBS, other forms of bowel dysfunction and IBS-associated comorbidities. We summarize preclinical animal models that provide a means to investigate the underlying molecular mechanisms in the sexual dimorphism of visceral pain. Neurons and nonneuronal cells (glia and immune cells) in the peripheral and central nervous systems, and the communication of gut microbiota and neural systems all contribute to sex-dependent nociception and nociplasticity in visceral painful signal processing. Emotion is another factor in pain perception and appears to have sexual dimorphism.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Liya Y. Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Waldron RT, Lugea A, Chang HH, Su HY, Quiros C, Lewis MS, Che M, Ramanujan VK, Rozengurt E, Eibl G, Pandol SJ. Upregulated Matrisomal Proteins and Extracellular Matrix Mechanosignaling Underlie Obesity-Associated Promotion of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:1593. [PMID: 38672675 PMCID: PMC11048773 DOI: 10.3390/cancers16081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Diet-induced obesity (DIO) promotes pancreatic ductal adenocarcinoma (PDAC) in mice expressing KRasG12D in the pancreas (KC mice), but the precise mechanisms remain unclear. Here, we performed multiplex quantitative proteomic and phosphoproteomic analysis by liquid chromatography-tandem mass spectrometry and further bioinformatic and spatial analysis of pancreas tissues from control-fed versus DIO KC mice after 3, 6, and 9 months. Normal pancreatic parenchyma and associated proteins were steadily eliminated and the novel proteins, phosphoproteins, and signaling pathways associated with PDAC tumorigenesis increased until 6 months, when most males exhibited cancer, but females did not. Differentially expressed proteins and phosphoproteins induced by DIO revealed the crucial functional role of matrisomal proteins, which implies the roles of upstream regulation by TGFβ, extracellular matrix-receptor signaling to downstream PI3K-Akt-mTOR-, MAPK-, and Yap/Taz activation, and crucial effects in the tumor microenvironment such as metabolic alterations and signaling crosstalk between immune cells, cancer-associated fibroblasts (CAFs), and tumor cells. Staining tissues from KC mice localized the expression of several prognostic PDAC biomarkers and elucidated tumorigenic features, such as robust macrophage infiltration, acinar-ductal metaplasia, mucinous PanIN, distinct nonmucinous atypical flat lesions (AFLs) surrounded by smooth muscle actin-positive CAFs, invasive tumors with epithelial-mesenchymal transition arising close to AFLs, and expanding deserted areas by 9 months. We next used Nanostring GeoMX to characterize the early spatial distribution of specific immune cell subtypes in distinct normal, stromal, and PanIN areas. Taken together, these data richly contextualize DIO promotion of Kras-driven PDAC tumorigenesis and provide many novel insights into the signaling pathways and processes involved.
Collapse
Affiliation(s)
- Richard T. Waldron
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Aurelia Lugea
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hui-Hua Chang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hsin-Yuan Su
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Crystal Quiros
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael S. Lewis
- Department of Medicine and Department of Pathology & Laboratory Medicine, VA Greater Los Angeles Health System, Cedars-Sinai Medical Center, Los Angeles, CA 90073, USA;
| | - Mingtian Che
- Biobank and Research Pathology Resource, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - V. Krishnan Ramanujan
- Biobank and Research Pathology Resource, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stephen J. Pandol
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
5
|
Pollock JA. Telling the Stories of Neuroscientific Discovery to Schoolchildren and the Public Can Make an Impact. eNeuro 2024; 11:ENEURO.0078-24.2024. [PMID: 38594072 PMCID: PMC11005080 DOI: 10.1523/eneuro.0078-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- John A Pollock
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, Pennsylvania 15282
| |
Collapse
|
6
|
Chen SH, Lin YW, Tseng WL, Lin WT, Lin SC, Hsueh YY. Ultrahigh frequency transcutaneous electrical nerve stimulation for neuropathic pain alleviation and neuromodulation. Neurotherapeutics 2024; 21:e00336. [PMID: 38368171 PMCID: PMC10943071 DOI: 10.1016/j.neurot.2024.e00336] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
A challenging complication in patients with peripheral compressive neuropathy is neuropathic pain. Excessive neuroinflammation at the injury site worsens neuropathic pain and impairs function. Currently, non-invasive modulation techniques like transcutaneous electrical nerve stimulation (TENS) have shown therapeutic promise with positive results. However, the underlying regulatory molecular mechanism for pain relief remains complex and unexplored. This study aimed to validate the therapeutic effect of ultrahigh frequency (UHF)-TENS in chronic constriction injury of the rat sciatic nerve. Alleviation of mechanical allodynia was achieved through the application of UHF-TENS, lasting for 3 days after one session of therapy and 4 days after two sessions, without causing additional damage to the myelinated axon structure. The entire tissue collection schedule was divided into four time points: nerve exposure surgery, 7 days after nerve ligation, and 1 and 5 days after one session of UHF therapy. Significant reductions in pain-related neuropeptides, MEK, c-Myc, c-FOS, COX2, and substance P, were observed in the injured DRG neurons after UHF therapy. RNA sequencing of differential gene expression in sensory neurons revealed significant downregulation in Cables, Pik3r1, Vps4b, Tlr7, and Ezh2 after UHF therapy, while upregulation was observed in Nfkbie and Cln3. UHF-TENS effectively and safely relieved neuropathic pain without causing further nerve damage. The decreased production of pain-related neuropeptides within the DRG provided the therapeutic benefit. Possible molecular mechanisms behind UHF-TENS may result from the modulation of the NF-κB complex, toll-like receptor-7, and phosphoinositide 3-kinase/Akt signaling pathways. These results suggest the neuromodulatory effects of UHF-TENS in rat sciatic nerve chronic constriction injury, including alleviation of neuropathic pain, amelioration of pain-related neuropeptides, and regulation of neuroinflammatory gene expression. In combination with the regulation of related neuroinflammatory genes, UHF-TENS could become a new modality for enhancing the treatment of neuropathic pain in the future.
Collapse
Affiliation(s)
- Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Division of Plastic and Reconstructive Surgery, Department of Surgery, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan
| | - Wei-Tso Lin
- Gimer Medical Co., Ltd, New Taipei City, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|