1
|
Mansouri P, Mansouri P, Najafipour S, Kouhpayeh SA, Farjadfar A, Behmard E. Comprehensive computational strategies for multi-target drug discovery in inflammatory bowel disease utilizing bioactive compounds. Sci Rep 2025; 15:15542. [PMID: 40319156 PMCID: PMC12049481 DOI: 10.1038/s41598-025-98771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition that encompasses ulcerative colitis (UC) and Crohn's disease (CD). Targeting both inflammation and the epithelial barrier simultaneously can significantly improve symptom management in IBD, as a promising strategy. In this study, we focused on addressing both inflammation and the epithelial barrier. Until now, each therapeutic target including phosphodiesterase 4 (PDE4) and prolyl hydroxylase domain enzymes 1 and 2 (PHD1/2) have been studied separately. PDE4 plays a key role in the inflammatory process by converting cyclic AMP (cAMP) to AMP and its inhibition can suppress the production of inflammatory cytokines. Research has shown that inhibiting PHD1 and PHD2 increases levels of hypoxia-inducible factor-alpha (HIF-α), which in turn strengthens the epithelial barrier by promoting the expression of protective factors such as mucins and β-defensins. Through virtual screening, molecular docking, and molecular dynamics simulations, we identified five compounds-Cassiamin C, Ginkgetin, Hinokiflavone, Sciadopitysin, and Sojagol-as promising new drug candidates for IBD treatment. All compounds demonstrated superior free binding energy for the three targets compared to reference ligands, except Sojagol concerning PDE4B. Among these compounds, Ginkgetin was the best compound with potential ability of targeting multiple drug target proteins. Future experimental studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Pardis Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pegah Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Zarrin Avaye Kowsar Salamat (ZAX company), Fasa, Iran
- HerbmedX company, Winnipeg , Manitoba, Canada
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Zarrin Avaye Kowsar Salamat (ZAX company), Fasa, Iran
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
- Zarrin Avaye Kowsar Salamat (ZAX company), Fasa, Iran.
- HerbmedX company, Winnipeg , Manitoba, Canada.
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Zarrin Avaye Kowsar Salamat (ZAX company), Fasa, Iran.
| |
Collapse
|
2
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2025; 39:1776-1807. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Alaouna M, Molefi T, Khanyile R, Chauke-Malinga N, Chatziioannou A, Luvhengo TE, Raletsena M, Penny C, Hull R, Dlamini Z. The potential of the South African plant Tulbaghia Violacea Harv for the treatment of triple negative breast cancer. Sci Rep 2025; 15:5737. [PMID: 39962120 PMCID: PMC11832780 DOI: 10.1038/s41598-025-88417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is difficult to treat and has a low five-year survival rate. In South Africa, a large percentage of the population still relies on traditional plant-based medicine. To establish the utility of both methanol and water-soluble extracts from the leaves of Tulbaghia violacea, cytotoxicity assays were carried out to establish the IC50 values against a TNBC cell line. Cell cycle and apoptosis assays were carried out using the extracts. To identify the molecular compounds, present in water-soluble leaf extracts, NMR spectroscopy was performed. Compounds of interest were then used in computational docking studies with the anti-apoptotic protein COX-2. The IC50 values for the water- and methanol-soluble extracts were determined to be 400 and 820 µg/mL, respectively. The water-soluble extract induced apoptosis in the TNBC cell line to a greater extent than in the normal cell line. RNAseq indicated that there was an increase in the transcription of pro-apoptotic genes in the TNBC cell line. The crude extract also caused these cells to stall in the S phase. Of the 61 compounds identified in this extract, five demonstrated a high binding affinity for COX-2. Based on these findings, the compounds within the extract show significant potential for further investigation as candidates for the development of cancer therapeutics, particularly for TNBC.
Collapse
Affiliation(s)
- Mohammed Alaouna
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thulo Molefi
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0001, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Richard Khanyile
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0001, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Nkhensani Chauke-Malinga
- Papillon Aesthetics, Suite 302b Netcare Linksfield Hospital, 24 12th Ave, Linksfield West, Johannesburg, 2192, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Thifhelimbilu Emmanuel Luvhengo
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maropeng Raletsena
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemistry, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodney Hull
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa.
| | - Zodwa Dlamini
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
4
|
Alam M, Abbas K, Mustafa M, Usmani N, Habib S. Microbiome-based therapies for Parkinson's disease. Front Nutr 2024; 11:1496616. [PMID: 39568727 PMCID: PMC11576319 DOI: 10.3389/fnut.2024.1496616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
The human gut microbiome dysbiosis plays an important role in the pathogenesis of Parkinson's disease (PD). The bidirectional relationship between the enteric nervous system (ENS) and central nervous system (CNS) under the mediation of the gut-brain axis control the gastrointestinal functioning. This review article discusses key mechanisms by which modifications in the composition and function of the gut microbiota (GM) influence PD progression and motor control loss. Increased intestinal permeability, chronic inflammation, oxidative stress, α-synuclein aggregation, and neurotransmitter imbalances are some key factors that govern gastrointestinal pathology and PD progression. The bacterial taxa of the gut associated with PD development are discussed with emphasis on the enteric nervous system (ENS), as well as the impact of gut bacteria on dopamine production and levodopa metabolism. The pathophysiology and course of the disease are associated with several inflammatory markers, including TNF-α, IL-1β, and IL-6. Emerging therapeutic strategies targeting the gut microbiome include probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). The article explored how dietary changes may affect the gut microbiota (GM) and the ways that can affect Parkinson's disease (PD), with a focus on nutrition-based, Mediterranean, and ketogenic diets. This comprehensive review synthesizes current evidence on the role of the gut microbiome in PD pathogenesis and explores its potential as a therapeutic target. Understanding these complex interactions may assist in the development of novel diagnostic tools and treatment options for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Mudassir Alam
- Indian Biological Sciences and Research Institute (IBRI), Noida, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Abankwah JK, Wang Y, Wang J, Ogbe SE, Pozzo LD, Chu X, Bian Y. Gut aging: A wane from the normal to repercussion and gerotherapeutic strategies. Heliyon 2024; 10:e37883. [PMID: 39381110 PMCID: PMC11456882 DOI: 10.1016/j.heliyon.2024.e37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Globally, age-related diseases represent a significant public health concern among the elderly population. In aging, healthy organs and tissues undergo structural and functional changes that put the aged adults at risk of diseases. Some of the age-related diseases include cancer, atherosclerosis, brain disorders, muscle atrophy (sarcopenia), gastrointestinal (GIT) disorders, etc. In organs, a decline in stem cell function is the starting point of many conditions and is extremely important in GIT disorder development. Many studies have established that aging affects stem cells and their surrounding supportive niche components. Although there is a significant advancement in treating intestinal aging, the rising elderly population coupled with a higher occurrence of chronic gut ailments necessitates more effective therapeutic approaches to preserve gut health. Notable therapeutic strategies such as Western medicine, traditional Chinese medicine, and other health-promotion interventions have been reported in several studies to hold promise in mitigating age-related gut disorders. This review highlights findings across various facets of gut aging with a focus on aging-associated changes of intestinal stem cells and their niche components, thus a deviation from the normal to repercussion, as well as essential therapeutic strategies to mitigate intestinal aging.
Collapse
Affiliation(s)
- Joseph K. Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Mostafavi Abdolmaleky H, Zhou JR. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants (Basel) 2024; 13:985. [PMID: 39199231 PMCID: PMC11351922 DOI: 10.3390/antiox13080985] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Corbetta P, Lonati E, Pagliari S, Mauri M, Cazzaniga E, Botto L, Campone L, Palestini P, Bulbarelli A. Flavonoids-Enriched Vegetal Extract Prevents the Activation of NFκB Downstream Mechanisms in a Bowel Disease In Vitro Model. Int J Mol Sci 2024; 25:7869. [PMID: 39063111 PMCID: PMC11277009 DOI: 10.3390/ijms25147869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) incidence has increased in the last decades due to changes in dietary habits. IBDs are characterized by intestinal epithelial barrier disruption, increased inflammatory mediator production and excessive tissue injury. Since the current treatments are not sufficient to achieve and maintain remission, complementary and alternative medicine (CAM) becomes a primary practice as a co-adjuvant for the therapy. Thus, the intake of functional food enriched in vegetal extracts represents a promising nutritional strategy. This study evaluates the anti-inflammatory effects of artichoke, caihua and fenugreek vegetal extract original blend (ACFB) in an in vitro model of gut barrier mimicking the early acute phases of the disease. Caco2 cells cultured on transwell supports were treated with digested ACFB before exposure to pro-inflammatory cytokines. The pre-treatment counteracts the increase in barrier permeability induced by the inflammatory stimulus, as demonstrated by the evaluation of TEER and CLDN-2 parameters. In parallel, ACFB reduces p65NF-κB pro-inflammatory pathway activation that results in the decrement of COX-2 expression as PGE2 and IL-8 secretion. ACFB properties might be due to the synergistic effects of different flavonoids, indicating it as a valid candidate for new formulation in the prevention/mitigation of non-communicable diseases.
Collapse
Affiliation(s)
- Paolo Corbetta
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Mario Mauri
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Luca Campone
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| |
Collapse
|
8
|
Saresella M, Zoia CP, La Rosa F, Bazzini C, Sala G, Grassenis E, Marventano I, Hernis A, Piancone F, Conti E, Sesana S, Re F, Seneci P, Ferrarese C, Clerici M. Glibenclamide-Loaded Engineered Nanovectors (GNVs) Modulate Autophagy and NLRP3-Inflammasome Activation. Pharmaceuticals (Basel) 2023; 16:1725. [PMID: 38139851 PMCID: PMC10747596 DOI: 10.3390/ph16121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Activation of the NLRP3 inflammasome in response to either exogenous (PAMPs) or endogenous (DAMPs) stimuli results in the production of IL-18, caspase-1 and IL-1β. These cytokines have a beneficial role in promoting inflammation, but an excessive activation of the inflammasome and the consequent constitutive inflammatory status plays a role in human pathologies, including Alzheimer's disease (AD). Autophagic removal of NLRP3 inflammasome activators can reduce inflammasome activation and inflammation. Likewise, inflammasome signaling pathways regulate autophagy, allowing the development of inflammatory responses but preventing excessive and detrimental inflammation. Nanotechnology led to the development of liposome engineered nanovectors (NVs) that can load and carry drugs. We verified in an in vitro model of AD-associated inflammation the ability of Glibenclamide-loaded NVs (GNVs) to modulate the balance between inflammasome activation and autophagy. Human THP1dM cells were LPS-primed and oligomeric Aß-stimulated in the presence/absence of GNVs. IL-1β, IL-18 and activated caspase-1 production was evaluated by the Automated Immunoassay System (ELLA); ASC speck formation (a marker of NLRP3 activation) was analyzed by FlowSight Imaging flow-cytometer (AMNIS); the expression of autophagy targets was investigated by RT-PCR and Western blot (WB); and the modulation of autophagy-related up-stream signaling pathways and Tau phosphorylation were WB-quantified. Results showed that GNVs reduce activation of the NLRP3 inflammasome and prevent the Aß-induced phosphorylation of ERK, AKT, and p70S6 kinases, potentiating autophagic flux and counteracting Tau phosphorylation. These preliminary results support the investigation of GNVs as a possible novel strategy in disease and rehabilitation to reduce inflammasome-associated inflammation.
Collapse
Affiliation(s)
- Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Chiara Paola Zoia
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Francesca La Rosa
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Chiara Bazzini
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Gessica Sala
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Erica Grassenis
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Ambra Hernis
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Elisa Conti
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Sesana
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (S.S.); (F.R.)
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (S.S.); (F.R.)
| | - Pierfausto Seneci
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Carlo Ferrarese
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
- Department of Neuroscience, IRCC Fondazione S. Gerardo dei Tintori, 20900 Monza, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|