1
|
Sun T, Li C, Luan J, Zhao F, Zhang Y, Liu J, Shao L. Black phosphorus for bone regeneration: Mechanisms involved and influencing factors. Mater Today Bio 2024; 28:101211. [PMID: 39280114 PMCID: PMC11402231 DOI: 10.1016/j.mtbio.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
BP has shown good potential for promoting bone regeneration. However, the understanding of the mechanisms of BP-enhanced bone regeneration is still limited. This review first summarizes the recent advances in applications of BP in bone regeneration. We further highlight the possibility that BP enhances bone regeneration by regulating the behavior of mesenchymal stem cells (MSCs), osteoblasts, vascular endothelial cells (VECs), and macrophages, mainly through the regulation of cytoskeletal remodeling, energy metabolism, oxidation resistance and surface adsorption properties, etc. In addition, moderating the physicochemical properties of BP (i.e., shape, size, and surface charge) can alter the effects of BP on bone regeneration. This review reveals the underlying mechanisms of BP-enhanced bone regeneration and provides strategies for further material design of BP-based materials for bone regeneration.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Chufeng Li
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Jiayi Luan
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
2
|
Cuahtecontzi Delint R, Jaffery H, Ishak MI, Nobbs AH, Su B, Dalby MJ. Mechanotransducive surfaces for enhanced cell osteogenesis, a review. BIOMATERIALS ADVANCES 2024; 160:213861. [PMID: 38663159 DOI: 10.1016/j.bioadv.2024.213861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Novel strategies employing mechano-transducing materials eliciting biological outcomes have recently emerged for controlling cellular behaviour. Targeted cellular responses are achieved by manipulating physical, chemical, or biochemical modification of material properties. Advances in techniques such as nanopatterning, chemical modification, biochemical molecule embedding, force-tuneable materials, and artificial extracellular matrices are helping understand cellular mechanotransduction. Collectively, these strategies manipulate cellular sensing and regulate signalling cascades including focal adhesions, YAP-TAZ transcription factors, and multiple osteogenic pathways. In this minireview, we are providing a summary of the influence that these materials, particularly titanium-based orthopaedic materials, have on cells. We also highlight recent complementary methodological developments including, but not limited to, the use of metabolomics for identification of active biomolecules that drive cellular differentiation.
Collapse
Affiliation(s)
- Rosalia Cuahtecontzi Delint
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Hussain Jaffery
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Wang S, Jia Z, Dai M, Feng X, Tang C, Liu L, Cao L. Advances in natural and synthetic macromolecules with stem cells and extracellular vesicles for orthopedic disease treatment. Int J Biol Macromol 2024; 268:131874. [PMID: 38692547 DOI: 10.1016/j.ijbiomac.2024.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.
Collapse
Affiliation(s)
- Supeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China; Ningxia Medical University, Ningxia 750004, China
| | - Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xujun Feng
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China.
| |
Collapse
|
4
|
Zheng H, Jiang S, Li M, Liu J, Wang X, Liu M, Feng C, Wei Y, Deng X. Multi-Omics Reveals the Genetic and Metabolomic Architecture of Chirality Directed Stem Cell Lineage Diversification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306400. [PMID: 37880901 DOI: 10.1002/smll.202306400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Chirality-directed stem-cell-fate determination involves coordinated transcriptional and metabolomics programming that is only partially understood. Here, using high-throughput transcriptional-metabolic profiling and pipeline network analysis, the molecular architecture of chirality-guided mesenchymal stem cell lineage diversification is revealed. A total of 4769 genes and 250 metabolites are identified that are significantly biased by the biomimetic chiral extracellular microenvironment (ECM). Chirality-dependent energetic metabolism analysis has revealed that glycolysis is preferred during left-handed ECM-facilitated osteogenic differentiation, whereas oxidative phosphorylation is favored during right-handed ECM-promoted adipogenic differentiation. Stereo-specificity in the global metabolite landscape is also demonstrated, in which amino acids are enriched in left-handed ECM, while ether lipids and nucleotides are enriched in right-handed ECM. Furthermore, chirality-ordered transcriptomic-metabolic regulatory networks are established, which address the role of positive feedback loops between key genes and central metabolites in driving lineage diversification. The highly integrated genotype-phenotype picture of stereochemical selectivity would provide the fundamental principle of regenerative material design.
Collapse
Affiliation(s)
- Huimin Zheng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Shengjie Jiang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Meijun Li
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinying Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaowei Wang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composite School of Materials and Science Technology, Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Xuliang Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| |
Collapse
|