1
|
Mancier V, Fattoum S, Haguet H, Laloy J, Maillet C, Gangloff SC, Chopart JP. Antifungal and Coagulation Properties of a Copper (I) Oxide Nanopowder Produced by Out-of-Phase Pulsed Sonoelectrochemistry. Antibiotics (Basel) 2024; 13:286. [PMID: 38534722 DOI: 10.3390/antibiotics13030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Copper (I) oxide (cuprite) is a material widely used nowadays, and its versatility is further amplified when it is brought to the nanometric size. Among the possible applications of this nanomaterial, one of the most interesting is that in the medical field. This paper presents a cuprite nanopowder study with the aim of employing it in medical applications. With regards to the environmental context, the synthesis used is related to green chemistry since the technique (out-of-phase pulsed electrochemistry) uses few chemical products via electricity consumption and soft conditions of temperature and pressure. After different physico-chemical characterizations, the nanopowder was tested on the Candida albicans to determine its fungicide activity and on human blood to estimate its hemocompatibility. The results show that 2 mg of this nanopowder diluted in 30 µL Sabouraud broth was able to react with Candida albicans. The hemocompatibility tests indicate that for 25 to 100 µg/mL of nanopowder in an aqueous medium, the powder was not toxic for human blood (no hemolysis nor platelet aggregation) but promoted blood coagulation. It appears, therefore, as a potential candidate for the functionalization of matrices for medical applications (wound dressing or operating field, for example).
Collapse
Affiliation(s)
- Valérie Mancier
- Université de Reims Champagne-Ardenne (URCA), Institut de Thermique, Mécanique et Matériaux (ITheMM, UR 7548), BP 1039, 51687 Reims, France
| | - Sirine Fattoum
- Université de Reims Champagne-Ardenne (URCA), Institut de Thermique, Mécanique et Matériaux (ITheMM, UR 7548), BP 1039, 51687 Reims, France
- Université de Reims Champagne-Ardenne (URCA), MATériaux et Ingénierie Mécanique (MATIM, UR 3689), BP 1039, 51687 Reims, France
| | - Hélène Haguet
- Département de Pharmacie, University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Julie Laloy
- Département de Pharmacie, University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Christina Maillet
- Université de Reims Champagne-Ardenne (URCA), Biomatériaux et Inflammation en Site Osseux (BIOS), 51097 Reims, France
| | - Sophie C Gangloff
- Université de Reims Champagne-Ardenne (URCA), Biomatériaux et Inflammation en Site Osseux (BIOS), 51097 Reims, France
| | - Jean-Paul Chopart
- Université de Reims Champagne-Ardenne (URCA), MATériaux et Ingénierie Mécanique (MATIM, UR 3689), BP 1039, 51687 Reims, France
| |
Collapse
|
2
|
Ali S, Ahmad N, Dar MA, Manan S, Rani A, Alghanem SMS, Khan KA, Sethupathy S, Elboughdiri N, Mostafa YS, Alamri SA, Hashem M, Shahid M, Zhu D. Nano-Agrochemicals as Substitutes for Pesticides: Prospects and Risks. PLANTS (BASEL, SWITZERLAND) 2023; 13:109. [PMID: 38202417 PMCID: PMC10780915 DOI: 10.3390/plants13010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
This review delves into the mesmerizing technology of nano-agrochemicals, specifically pesticides and herbicides, and their potential to aid in the achievement of UN SDG 17, which aims to reduce hunger and poverty globally. The global market for conventional pesticides and herbicides is expected to reach USD 82.9 billion by 2027, growing 2.7% annually, with North America, Europe, and the Asia-Pacific region being the biggest markets. However, the extensive use of chemical pesticides has proven adverse effects on human health as well as the ecosystem. Therefore, the efficacy, mechanisms, and environmental impacts of conventional pesticides require sustainable alternatives for effective pest management. Undoubtedly, nano-agrochemicals have the potential to completely transform agriculture by increasing crop yields with reduced environmental contamination. The present review discusses the effectiveness and environmental impact of nanopesticides as promising strategies for sustainable agriculture. It provides a concise overview of green nano-agrochemical synthesis and agricultural applications, and the efficacy of nano-agrochemicals against pests including insects and weeds. Nano-agrochemical pesticides are investigated due to their unique size and exceptional performance advantages over conventional ones. Here, we have focused on the environmental risks and current state of nano-agrochemicals, emphasizing the need for further investigations. The review also draws the attention of agriculturists and stakeholders to the current trends of nanomaterial use in agriculture especially for reducing plant diseases and pests. A discussion of the pros and cons of nano-agrochemicals is paramount for their application in sustainable agriculture.
Collapse
Affiliation(s)
- Shehbaz Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Mudasir A. Dar
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Sehrish Manan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Abida Rani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | | | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia;
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Yasser S. Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (Y.S.M.); (S.A.A.)
| | - Saad A. Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (Y.S.M.); (S.A.A.)
| | - Mohamed Hashem
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| |
Collapse
|