1
|
Yu T, Zhang J, Cao J, Li S, Cai Q, Li X, Li S, Li Y, He C, Ma X. Identification of Multiple Genetic Loci Related to Low-Temperature Tolerance during Germination in Maize ( Zea maize L.) through a Genome-Wide Association Study. Curr Issues Mol Biol 2023; 45:9634-9655. [PMID: 38132448 PMCID: PMC10742315 DOI: 10.3390/cimb45120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Low-temperature stress during the germination stage is an important abiotic stress that affects the growth and development of northern spring maize and seriously restricts maize yield and quality. Although some quantitative trait locis (QTLs) related to low-temperature tolerance in maize have been detected, only a few can be commonly detected, and the QTL intervals are large, indicating that low-temperature tolerance is a complex trait that requires more in-depth research. In this study, 296 excellent inbred lines from domestic and foreign origins (America and Europe) were used as the study materials, and a low-coverage resequencing method was employed for genome sequencing. Five phenotypic traits related to low-temperature tolerance were used to assess the genetic diversity of maize through a genome-wide association study (GWAS). A total of 14 SNPs significantly associated with low-temperature tolerance were detected (-log10(P) > 4), and an SNP consistently linked to low-temperature tolerance in the field and indoors during germination was utilized as a marker. This SNP, 14,070, was located on chromosome 5 at position 2,205,723, which explained 4.84-9.68% of the phenotypic variation. The aim of this study was to enrich the genetic theory of low-temperature tolerance in maize and provide support for the innovation of low-temperature tolerance resources and the breeding of new varieties.
Collapse
Affiliation(s)
- Tao Yu
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Jianguo Zhang
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Jingsheng Cao
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Shujun Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Quan Cai
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Xin Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Sinan Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Yunlong Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Changan He
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihaer 161000, China
| | - Xuena Ma
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
2
|
Xing E, Fan X, Jiang F, Zhang Y. Advancements in Research on Prevention and Control Strategies for Maize White Spot Disease. Genes (Basel) 2023; 14:2061. [PMID: 38003004 PMCID: PMC10671673 DOI: 10.3390/genes14112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Maize white spot (MWS), caused by the bacterium Pantoea ananatis, is a serious disease that significantly impacts maize production and productivity. In recent years, outbreaks of white spot disease have resulted in substantial maize yield losses in southwest China. Researchers from various countries worldwide have conducted extensive research on this pathogen, including its isolation and identification, the localization of resistance genes, transmission pathways, as well as potential control measures. However, the information related to this disease remains fragmented, and standardized preventive and control strategies have not yet been established. In light of this, this review aims to comprehensively summarize the research findings on MWS, providing valuable insights into understanding its occurrence, prevention, and control measures in the southwestern and southern regions of China while also mitigating the detrimental impact and losses caused by MWS on maize production in China and across the world.
Collapse
Affiliation(s)
- Enyun Xing
- Institute of Resource Plants, Yunnan University, Kunming 650500, China;
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (Y.Z.)
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (Y.Z.)
| | - Yudong Zhang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (Y.Z.)
| |
Collapse
|