1
|
Ma F, Wang W, Wang M, Zhang W, Zhang S, Wilson G, Sa Y, Zhang Y, Chen G, Ma X. Fluorescence paper sensor meets magnetic affinity chromatography: discovering potent neuraminidase inhibitors in herbal medicines. Anal Bioanal Chem 2025; 417:1819-1832. [PMID: 39890624 DOI: 10.1007/s00216-025-05761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Given the inherent complexity of natural medicines, finding a straightforward and efficient method for identifying active ingredients remains a significant challenge, yet it is of paramount importance. Influenza virus neuraminidase (NA), a primary target for anti-influenza drug development, plays a crucial role in the infection process, making it essential to develop rapid and facile methods for screening NA inhibitors. Herein, we developed a novel and efficient analytical technique for the identification of NA inhibitors from complex herbal medicines by integrating dual sensing with affinity chromatography. This approach simplifies the experimental process and highlights the benefits of being quicker, more sensitive, and cost-effective. Regarding the biosensing section, the innovative concept of a 4-methylumbelliferyl-N-acetylneuraminic acid-NA-based fluorescence paper sensor strategy enables the rapid detection of NA inhibitors in complex herbal samples. In affinity chromatography, bioactive compounds were precisely captured, separated, and identified. The efficacy and reliability of the developed method were confirmed using both negative and positive controls. Then, the method was applied to screen for NA inhibitors in 20 different herbal medicines. The results revealed that Bupleurum chinense DC. exhibited the most pronounced inhibitory effect on NA. Subsequent analysis utilizing affinity chromatography identified three bioactive compounds, namely saikosaponin a, saikosaponin d, and baicalin, as the active agents responsible for this inhibitory effect, with IC50 values of 177.3 μM, 262.9 μM, and 241.4 μM, respectively. Molecular docking studies further indicated that these three bioactive compounds exhibit a strong binding affinity with NA. This research provides novel insights into the screening of enzyme inhibitors within herbal medicines.
Collapse
Affiliation(s)
- Fen Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Mei Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weiman Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Shuxian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Yue Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Guoning Chen
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China.
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China.
| |
Collapse
|
2
|
He Y, Zhao X, Yu M, Yang D, Chen L, Tang C, Zhang Y. Affinity Ultrafiltration Mass Spectrometry for Screening Active Ingredients in Traditional Chinese Medicine: A Review of the Past Decade (2014-2024). Molecules 2025; 30:608. [PMID: 39942712 PMCID: PMC11820328 DOI: 10.3390/molecules30030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Discovering targets in natural products is a critical and challenging task in new drug development. Rapid and efficient screening of active ingredients from complex systems like traditional Chinese medicine (TCM) is now crucial in drug research. Affinity ultrafiltration (AUF) technology is widely used to screen active ingredients in natural medicines. AUF-liquid chromatography-mass spectrometry (AUF-LC-MS) leverages the affinity between natural medicine extracts and targets to isolate active ingredients from complex matrices, employing LC-MS for detection and activity assessment. This review discusses the developments in employing AUF-LC-MS to analyze TCM and TCM compound preparations over the last decade. This review succinctly presents the advantages and limitations of AUF-LC-MS, illustrating its benefits through the example of screening for active ingredients in natural pharmaceuticals.
Collapse
Affiliation(s)
- Yuqi He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Xinyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Muze Yu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Di Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Lian Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| |
Collapse
|
3
|
Hu S, Li Y, Hu L. Special Issue "Drug Discovery and Application of New Technologies". Int J Mol Sci 2024; 25:11756. [PMID: 39519305 PMCID: PMC11547038 DOI: 10.3390/ijms252111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Historically, drug discovery and development have proven to be time-consuming and costly, with the process averaging around 15 years and costing approximately USD 2 billion to bring a new small-molecule drug to market [...].
Collapse
Affiliation(s)
| | | | - Liming Hu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China (Y.L.)
| |
Collapse
|
4
|
Wei Y, Fang X, Lu F, Yan X, Li D, Song J. Network pharmacology and experimental verification to explore the anti-inflammatory activities of triterpenoids from Siraitia grosvenorii. Nat Prod Res 2024:1-5. [PMID: 39381933 DOI: 10.1080/14786419.2024.2412312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Siraitia grosvenorii (Swingle) C. Jeffrey (SG), a Chinese medicinal plant, exhibits promising anti-inflammatory properties. Based on previous reports, aglycone and mogrosides bearing lesser glucosyl groups may contribute to the bioactivity of SG in vivo. However, research has rarely been conducted to compare their activities and analyse the structure-activity relationship. In this study, the anti-inflammatory potency of triterpenoids from SG and possible mechanisms of action based on network pharmacology were investigated. Furthermore, eighteen triterpenoids were chosen to assess their anti-inflammatory activities and structure-activity relationship in LPS-induced RAW 264.7 cells, among which 11-oxo-mogrol performed the best. Western blotting and molecular docking identified that 11-oxo-mogrol could regulate the PI3K/AKT signalling pathway. These findings provide valuable insights into the molecular mechanisms underlying the anti-inflammatory properties of triterpenoids from SG and support their application as potential therapeutic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Yulu Wei
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xiuyun Fang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Fenglai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xiaojie Yan
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Dianpeng Li
- Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingru Song
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
5
|
Pan G, Lu Y, Wei Z, Li Y, Li L, Pan X. A review on the in vitro and in vivo screening of α-glucosidase inhibitors. Heliyon 2024; 10:e37467. [PMID: 39309836 PMCID: PMC11415703 DOI: 10.1016/j.heliyon.2024.e37467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
As a global metabolic disease, the control and treatment of diabetes have always been the focus of medical research. α-Glucosidase is a key enzyme in regulating blood glucose levels and has important applications in the treatment of diabetes. This review aims to explore the enzyme activity of α-glucosidase and its inhibition mechanism and evaluate the efficacy and limitations of existing inhibitor screening methods. First, the chemical structure, biological activity, and influencing factors of α-glucosidase on diabetes are discussed in detail. Then, the various methods that have been used to screen α-glucosidase inhibitors in recent years are reviewed, including in vivo animal experiments, in vitro experiments, and virtual molecular docking. The experimental principles, advantages, and limitations of each method and their application in discovering new inhibitors are also discussed. Finally, this review emphasizes the importance of developing efficient and safe α-glucosidase inhibitors, summarizes the advantages and disadvantages of various screening models, and proposes future research directions. This review comprehensively examines the enzyme activity of α-glucosidase and the screening methods for α-glucosidase inhibitors, provides an important perspective in the field of diabetes drug discovery and development, and provides a reference for future research.
Collapse
Affiliation(s)
- Guangjuan Pan
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yantong Lu
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhiying Wei
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yaohua Li
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Li Li
- Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Nanning, 530200, China
- The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Nanning, 530200, China
- Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Nanning, 530200, China
| | - Xiaojiao Pan
- Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Nanning, 530200, China
- The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Nanning, 530200, China
- Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Nanning, 530200, China
| |
Collapse
|
6
|
Zhang S, Wang X, Wang X, Fan X, Liu K, Sa Y, Wilson G, Ma X, Chen G. Establishment and application of a screening method for α-glucosidase inhibitors based on dual sensing and affinity chromatography. J Chromatogr A 2024; 1720:464822. [PMID: 38502989 DOI: 10.1016/j.chroma.2024.464822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
α-Glucosidase plays a direct role in the metabolic pathways of starch and glycogen, any dysfunction in its activity could result in metabolic disease. Concurrently, this enzyme serves as a target for diverse drugs and inhibitors, contributing to the regulation of glucose metabolism in the human body. Here, an integrated analytical method was established to screen inhibitors of α-glucosidase. This step-by-step screening model was accomplished through the biosensing and affinity chromatography techniques. The newly proposed sensing program had a good linear relationship within the enzyme activity range of 0.25 U mL-1 to 1.25 U mL-1, which can quickly identify active ingredients in complex samples. Then the potential active ingredients can be captured, separated, and identified by an affinity chromatography model. The combination of the two parts was achieved by an immobilized enzyme technology and a microdevice for reaction, and the combination not only ensured efficiency and accuracy for inhibitor screening but also eliminated the occurrence of false positive results in the past. The emodin, with a notable inhibitory effect on α-glucosidase, was successfully screened from five traditional Chinese medicines using this method. The molecular docking results also demonstrated that emodin was well embedded into the active pocket of α-glucosidase. In summary, the strategy provided an efficient method for developing new enzyme inhibitors from natural products.
Collapse
Affiliation(s)
- Shuxian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaofei Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Keshuai Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
7
|
Huang H, Peng Z, Zhan S, Li W, Liu D, Huang S, Zhu Y, Wang W. A comprehensive review of Siraitia grosvenorii (Swingle) C. Jeffrey: chemical composition, pharmacology, toxicology, status of resources development, and applications. Front Pharmacol 2024; 15:1388747. [PMID: 38638866 PMCID: PMC11024725 DOI: 10.3389/fphar.2024.1388747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Siraitia grosvenorii (Swingle) C. Jeffrey (S. grosvenorii), a perennial indigenous liana from the Cucurbitaceae family, has historically played a significant role in southern China's traditional remedies for various ailments. Its dual classification by the Chinese Ministry of Health for both medicinal and food utility underscores its has the potential of versatile applications. Recent research has shed light on the chemical composition, pharmacological effects, and toxicity of S. grosvenorii. Its active ingredients include triterpenoids, flavonoids, amino acids, volatile oils, polysaccharides, minerals, vitamins, and other microconstituents. Apart from being a natural sweetener, S. grosvenorii has been found to have numerous pharmacological effects, including alleviating cough and phlegm, preventing dental caries, exerting anti-inflammatory and anti-allergic effects, anti-aging and anti-oxidative, hypoglycemic, lipid-lowering, anti-depression, anti-fatigue, anti-schizophrenic, anti-Parkinson, anti-fibrotic, and anti-tumor activities. Despite its versatile potential, there is still a lack of systematic research on S. grosvenorii to date. This paper aims to address this gap by providing an overview of the main active components, pharmacological efficacy, toxicity, current status of development and application, development dilemmas, and strategies for intensive exploitation and utilization of S. grosvenorii. This paper aims to serve as a guide for researchers and practitioners committed to exploiting the biological resources of S. grosvenorii and further exploring its interdisciplinary potential.
Collapse
Affiliation(s)
- Huaxue Huang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Zhi Peng
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Shuang Zhan
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Wei Li
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Dai Liu
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Sirui Huang
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wei Wang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|