1
|
Rieber J, Niederhauser RK, Giovanoli P, Buschmann J. Fabrication and Characterization of Electrospun DegraPol ® Tubes Releasing TIMP-1 Protein to Modulate Tendon Healing. MATERIALS (BASEL, SWITZERLAND) 2025; 18:665. [PMID: 39942332 PMCID: PMC11820012 DOI: 10.3390/ma18030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Tendon rupture repair can result from fibrotic scar formation through imbalanced ECM deposition during remodeling. The tissue inhibitors of matrix metalloprotease (TIMPs) not only decrease ECM degradation, regulated by matrix metalloproteases (MMPs), but also restrict TGF-β1 activation and thus diminish fibrosis. METHODS Rabbit tenocytes (rbTenocytes) and rabbit adipose-derived stem cells (rbASCs) were cultivated under different TIMP-1 concentrations. Proliferation and gene expression were assessed. TIMP-1 was incorporated into emulsion electrospun DegraPol® (DP) tubes that were characterized by SEM for fiber thickness, pore size, and wall thickness. Static and dynamic water contact angles, FTIR spectra, and TIMP-1 release kinetics were determined. RESULTS While the proliferation of rbTenocytes and rbACS was not affected by TIMP-1 supplementation in vitro, the gene expression of Col1A1 was increased in rbTenocytes, the gene expression of ki67 was increased in both cell types, the gene expression of tenomodulin was increased in both cell types at 100 ng/mL TIMP-1, and alkaline phosphatase expression ALP rose significantly in rbASCs. Electrospun TIMP-1/DP fibers had a ~5 μm diameter, a ~10 μm pore size, and a mesh thickness of ~200 μm. TIMP-1/DP meshes were more hydrophilic than pure DP meshes. TIMP-1 was released from the meshes with a sustained release of up to 7 days. CONCLUSIONS TIMP-1/DP tubes may be used to modulate the fibrotic tissue reaction when applied around conventionally sutured tendon ruptures.
Collapse
Affiliation(s)
| | | | | | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (J.R.); (R.K.N.); (P.G.)
| |
Collapse
|
2
|
Rieber J, Meier-Bürgisser G, Miescher I, Weber FE, Wolint P, Yang Y, Ongini E, Milionis A, Snedeker JG, Calcagni M, Buschmann J. Mechanical, water contact angle and fiber thickness data for Insulin-like growth gactor-1 (IGF-1) incorporated in electrospun random DegraPol Ⓡ fibers and IGF-1 impact on tenocyte aspect ratio and gene expression data. Data Brief 2024; 57:111139. [PMID: 39687367 PMCID: PMC11647151 DOI: 10.1016/j.dib.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
The first set of data refers to Insulin-like Growth Factor-1 (IGF-1) protein incorporation via emulsion electrospinning into a DegraPolⓇ random fiber mesh and its characterization. Specifically, the fiber thickness was assessed and compared to pure DegraPolⓇ fibers without IGF-1 (control). Furthermore, the mechanical properties of these meshes were assessed and data on ultimate tensile stress, Young's modulus and ultimate fracture strain are presented for ring specimen and rectangular pieces taken from electrospun tubes in the transverse direction as well as rectangular pieces taken in the axial direction of the electrospun tube. Moreover, the static and the dynamic water contact angles were determined. The second set of data represents morphological aspects, such as the cytoskeletal aspect ratio (i.e. length of the cell divided by its width) for rabbit Achilles tenocytes stimulated in vitro with 1, 10, and 100 ng/mL IGF-1 supplementation compared to the corresponding cell culture without IGF-1 (control). Furthermore, qPCR was performed and collagen I, ki67 and tenomodulin gene expression data are presented for rabbit Achilles tenocytes in vitro with 0.1, 1 and 10 ng/mL IGF-1 supplementation, respectively, as well as with a supplementation of released IGF-1 from the DegraPol mesh (concentration was 1 ng/mL).
Collapse
Affiliation(s)
- Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Gabriella Meier-Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Franz E. Weber
- Oral Biotechnology & Bioengineering, Center for Dental Medicine, Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich 8032, Switzerland
| | - Petra Wolint
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Yao Yang
- Department of Health Sciences & Technology & Department of Materials, Schmelzbergstrasse 9, LFO, 8092 Zürich, Switzerland
| | - Esteban Ongini
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineer-ing, ETH Zürich, 8092 Zürich, Switzerland
| | - Jess G. Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
3
|
Ciardulli MC, Lovecchio J, Parolini O, Giordano E, Maffulli N, Della Porta G. Fibrin Scaffolds Perfused with Transforming Growth Factor-β1 as an In Vitro Model to Study Healthy and Tendinopathic Human Tendon Stem/Progenitor Cells. Int J Mol Sci 2024; 25:9563. [PMID: 39273510 PMCID: PMC11395617 DOI: 10.3390/ijms25179563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
A limited understanding of tendon cell biology in healthy and pathological conditions has impeded the development of effective treatments, necessitating in vitro biomimetic models for studying tendon events. We established a dynamic culture using fibrin scaffolds, bioengineered with tendon stem/progenitor cells (hTSPCs) from healthy or diseased human biopsies and perfused with 20 ng/mL of human transforming growth factor-β1 for 21 days. Both cell types showed long-term viability and upregulated Scleraxis (SCX-A) and Tenomodulin (TNMD) gene expressions, indicating tenogenic activity. However, diseased hTSPCs underexpressed collagen type I and III (COL1A1 and COL3A1) genes and exhibited lower SCX-A and TNMD protein levels, but increased type I collagen production, with a type I/type III collagen ratio > 1.5 by day 14, matching healthy cells. Diseased hTSPCs also showed constant high levels of pro-inflammatory cytokines, such as IL-8 and IL-6. This biomimetic environment is a valuable tool for studying tenogenic and inflammatory events in healthy and diseased tendon cells and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Translational Nanomedicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy
| | - Joseph Lovecchio
- School of Science and Engineering, Reykjavík University, 102 Reykjavík, Iceland
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavík, Iceland
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00136 Rome, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giovanna Della Porta
- Translational Nanomedicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Miescher I, Schaffner N, Rieber J, Bürgisser GM, Ongini E, Yang Y, Milionis A, Vogel V, Snedeker JG, Calcagni M, Buschmann J. Hyaluronic acid/PEO electrospun tube reduces tendon adhesion to levels comparable to native tendons - An in vitro and in vivo study. Int J Biol Macromol 2024; 273:133193. [PMID: 38885859 DOI: 10.1016/j.ijbiomac.2024.133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
A major problem after tendon injury is adhesion formation to the surrounding tissue leading to a limited range of motion. A viable strategy to reduce adhesion extent is the use of physical barriers that limit the contact between the tendon and the adjacent tissue. The purpose of this study was to fabricate an electrospun bilayered tube of hyaluronic acid/polyethylene oxide (HA/PEO) and biodegradable DegraPol® (DP) to improve the anti-adhesive effect of the implant in a rabbit Achilles tendon full laceration model compared to a pure DP tube. Additionally, the attachment of rabbit tenocytes on pure DP and HA/PEO containing scaffolds was tested and Scanning Electron Microscopy, Fourier-transform Infrared Spectroscopy, Differential Scanning Calorimetry, Water Contact Angle measurements, and testing of mechanical properties were used to characterize the scaffolds. In vivo assessment after three weeks showed that the implant containing a second HA/PEO layer significantly reduced adhesion extent reaching levels comparable to native tendons, compared with a pure DP implant that reduced adhesion formation only by 20 %. Tenocytes were able to attach to and migrate into every scaffold, but cell number was reduced over two weeks. Implants containing HA/PEO showed better mechanical properties than pure DP tubes and with the ability to entirely reduce adhesion extent makes this implant a promising candidate for clinical application in tendon repair.
Collapse
Affiliation(s)
- Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Nicola Schaffner
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Esteban Ongini
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Yao Yang
- Department of Health Sciences & Technology & Department of Materials, Schmelzbergstrasse 9, LFO, 8092 Zürich, Switzerland.
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland.
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
5
|
Hart DA, Ahmed AS, Chen J, Ackermann PW. Optimizing tendon repair and regeneration: how does the in vivo environment shape outcomes following rupture of a tendon such as the Achilles tendon? Front Bioeng Biotechnol 2024; 12:1357871. [PMID: 38433820 PMCID: PMC10905747 DOI: 10.3389/fbioe.2024.1357871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Risk for rupture of the Achilles tendon, and other tendons increases with age. Such injuries of tissues that function in high load environments generally are believed to heal with variable outcome. However, in many cases, the healing does not lead to a good outcome and the patient cannot return to the previous level of participation in active living activities, including sports. In the past few years, using proteomic approaches and other biological techniques, reports have appeared that identify biomarkers that are prognostic of good outcomes from healing, and others that are destined for poor outcomes using validated criteria at 1-year post injury. This review will discuss some of these recent findings and their potential implications for improving outcomes following connective tissue injuries, as well as implications for how clinical research and clinical trials may be conducted in the future where the goal is to assess the impact of specific interventions on the healing process, as well as focusing the emphasis on regeneration and not just repair.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Junyu Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Paul W. Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Miescher I, Rieber J, Schweizer TA, Orlietti M, Tarnutzer A, Andreoni F, Meier Buergisser G, Giovanoli P, Calcagni M, Snedeker JG, Zinkernagel AS, Buschmann J. In Vitro Assessment of Bacterial Adhesion and Biofilm Formation on Novel Bioactive, Biodegradable Electrospun Fiber Meshes Intended to Support Tendon Rupture Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6348-6355. [PMID: 38288645 DOI: 10.1021/acsami.3c15710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The surgical repair of a ruptured tendon faces two major problems: specifically increased fibrous adhesion to the surrounding tissue and inferior mechanical properties of the scar tissue compared to the native tissue. Bacterial attachment to implant materials is an additional problem as it might lead to severe infections and impaired recovery. To counteract adhesion formation, two novel implant materials were fabricated by electrospinning, namely, a random fiber mesh containing hyaluronic acid (HA) and poly(ethylene oxide) (PEO) in a ratio of 1:1 (HA/PEO 1:1) and 1:4 (HA/PEO 1:4), respectively. Electrospun DegraPol (DP) treated with silver nanoparticles (DP-Ag) was developed to counteract the bacterial attachment. The three novel materials were compared to the previously described DP and DP with incorporated insulin-like growth factor-1 (DP-IGF-1), two implant materials that were also designed to improve tendon repair. To test whether the materials are prone to bacterial adhesion and biofilm formation, we assessed 10 strains of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Enterococcus faecalis, known for causing nosocomial infections. Fiber diameter, pore size, and water contact angle, reflecting different degrees of hydrophobicity, were used to characterize all materials. Generally, we observed higher biofilm formation on the more hydrophobic DP as compared to the more hydrophilic DP-IGF-1 and a trend toward reduced biofilm formation for DP treated with silver nanoparticles. For the two HA/PEO implants, a similar biofilm formation was observed. All tested materials were highly prone to bacterial adherence and biofilm formation, pointing toward the need of further material development, including the optimized incorporation of antibacterial agents such as silver nanoparticles or antibiotics.
Collapse
Affiliation(s)
- Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Tiziano A Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mariano Orlietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Gabriella Meier Buergisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Jess G Snedeker
- Laboratory for Orthopedic Biomechanics, Department of Orthopedics, University of Zurich, Lengghalde 5, 8008 Zurich, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
7
|
Xu L, He H, Du Y, Zhang S, Yu DG, Liu P. Electrosprayed Core (Cellulose Acetate)-Shell (Polyvinylpyrrolidone) Nanoparticles for Smart Acetaminophen Delivery. Pharmaceutics 2023; 15:2314. [PMID: 37765283 PMCID: PMC10537010 DOI: 10.3390/pharmaceutics15092314] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Smart drug delivery, through which the drug molecules are delivered according to the requests of human biological rhythms or by maximizing drug therapeutic effects, is highly desired in pharmaceutics. Many biomacromolecules have been exploited for this application in the past few decades, both in industry and laboratories. Biphasic release, with an intentional pulsatile release and a following extended release stage, represents a typical smart drug delivery approach, which aims to provide fast therapeutic action and a long time period of effective blood drug concentration to the patients. In this study, based on the use of a well-known biomacromolecule, i.e., cellulose acetate (CA), as the drug (acetaminophen, ATP)-based sustained release carrier, a modified coaxial electrospraying process was developed to fabricate a new kind of core-shell nanoparticle. The nanoparticles were able to furnish a pulsatile release of ATP due to the shell polyvinylpyrrolidone (PVP). The time cost for a release of 30% was 0.32 h, whereas the core-shell particles were able to provide a 30.84-h sustained release of the 90% loaded ATP. The scanning electron microscope and transmission electron microscope results verified in terms of their round surface morphologies and the obvious core-shell double-chamber structures. ATP presented in both the core and shell sections in an amorphous state owing to its fine compatibility with CA and PVP. The controlled release mechanisms of ATP were suggested. The disclosed biomacromolecule-based process-structure-performance relationship can shed light on how to develop new sorts of advanced nano drug delivery systems.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (Y.D.)
| | - Hua He
- The Third Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (Y.D.)
| | - Shengwei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (Y.D.)
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200443, China
| |
Collapse
|