1
|
Chen SC, Holmes CJ, Ajayi OM, Goodhart G, Eaton D, Catlett N, Cady T, Tran H, Lutz LE, Wang L, Girard E, Savino J, Bidiwala A, Benoit JB. The impact of sugar diet on humidity preference, survival, and host landing in mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf048. [PMID: 40221846 DOI: 10.1093/jme/tjaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Mosquito-borne diseases have caused more than 1 million deaths each year. There is an urgent need to develop an effective way to reduce mosquito-host interaction to mitigate disease transmission. Sugar diets have long been linked to abnormal physiology in animals, making them potential candidates for mosquito control. Here, we show the impact of sugar diets on humidity preference and survival in Aedes aegypti (Gainesville) and Culex pipiens (Buckeye). Two-choice assays with high and low relative humidity (80% and 50% RH) show that the impact of sugar diets on humidity preference is species-specific. In comparison to Cx. pipiens, various sugar diets resulted in marked reductions in humidity avidity and preference in Ae. aegypti, which exhibited significant differences. Among the sugar diets, arabinose significantly reduced the survival rate of mosquitoes at low concentrations. Moreover, we found that host landing was not impacted by feeding on different sugar types. Our study suggests that specific sugar treatments could be applied to mosquito control by dampening their humidity preference and reducing their lifespan, thus reducing mosquito-borne disease transmission.
Collapse
Affiliation(s)
- Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Grace Goodhart
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel Eaton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan Catlett
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tabitha Cady
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hannah Tran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Luke E Lutz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lyn Wang
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ella Girard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jaida Savino
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Amena Bidiwala
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Chen SC, Holmes CJ, Ajayi OM, Goodhart G, Eaton D, Catlett N, Cady T, Tran H, Lutz LE, Wang L, Girard E, Savino J, Bidiwala A, Benoit JB. The impact of sugar diet on humidity preference, survival, and host landing in mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613762. [PMID: 39386524 PMCID: PMC11463526 DOI: 10.1101/2024.09.23.613762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mosquito-borne diseases have caused more than one million deaths each year. There is an urgent need to develop an effective way to reduce mosquito-host interaction to mitigate disease transmission. Sugar diets have long been linked to abnormal physiology in animals, making them potential candidates for mosquito control. Here, we show the impact of sugar diets on humidity preference and survival in Aedes aegypti and Culex pipiens . With two-choice assays between 100% and 75% relative humidity (RH), we demonstrate that the effect of sugar diets on humidity preference is species-specific where Ae. aegypti showed significant differences and the reduced effects were noted in Cx. pipiens . Among the sugar diets, arabinose significantly reduced the survival rate of mosquitoes even at low concentrations. Moreover, we found that host landing was not impacted by feeding on different sugar types. Our study suggests that specific sugar treatments could be applied to mosquito control by dampening their humidity preference and reducing their lifespan, thus reducing mosquito-borne disease transmission.
Collapse
|
3
|
Cotterill S, Yamaguchi M. Role of Drosophila in Human Disease Research 3.0. Int J Mol Sci 2023; 25:292. [PMID: 38203464 PMCID: PMC10779114 DOI: 10.3390/ijms25010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Drosophila melanogaster has become a commonly used animal model for biomedical research in a variety of areas [...].
Collapse
Affiliation(s)
- Sue Cotterill
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Masamitsu Yamaguchi
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co., Ltd., 3-6-2 Hikaridai, Seika-cho, Kyoto 619-0237, Japan;
| |
Collapse
|