1
|
Shaban YA, Orif MI, Ghandourah MA, Turki AJ, Alorfi HS, Al-Boqami M, Althagbi HI, Alarif WM. Green synthesis of Ag/V 2O 5 and Ag/V 2O 5-curdlan nanocomposites from Sargassum latifolium extract for enhanced antimicrobial and antioxidant activities. Int J Biol Macromol 2025; 301:140472. [PMID: 39892540 DOI: 10.1016/j.ijbiomac.2025.140472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
The emergence of clinic-isolated bacteria and their ability to develop resistance mechanisms against conventional antimicrobials highlights the urgent need for novel, sustainable antimicrobial agents. This study explores the synthesis of Ag/V2O5 nanocomposites (NCs) using Sargassum latifolium extract, which is incorporated into a curdlan biocompatible matrix. The developed nanocomposites are evaluated for their antioxidant and antimicrobial activities, with a particular focus on their effectiveness against pathogenic bacteria. The applied method in this work combines green synthesis with the process of uniform distribution of nanoparticles to a biocompatible polymer, which is a way forward towards the design of efficient biocompatible antimicrobial systems. The Ag/V2O5 nanoparticles prepared with green synthesis were characterized by UV-Vis absorption, FTIR, XRD, SEM, EDX, zeta potential, DLS, and TEM. It has also been established that the antimicrobial property of the curdlan matrix has been enhanced with the addition of Ag/V2O5 nanoparticles in the incorporated curdlan composites. Ag/V2O5-curdlan also showed significantly enhanced antimicrobial activity against Gram-negative bacteria and Gram-positive bacteria thus implying enhanced antimicrobial action of the prepared nanocomposite by increasing the size of the bacterial zone of inhibition from 14.0 to 18.0 mm. Besides, the curdlan NC in the presence of Ag/V2O5 demonstrated an even lower value of MIC against Rhizoctonia solani (140.156 μg/mL) in comparison with Ag/V2O5 NC (226.413 μg/mL) thus predicting Augmented antifungal activity. Through performing TEM analysis, we have observed significant morphological changes in R. solani strain when the Ag/V2O5-curdlan NC was used. However, the Ag/V2O5-curdlan NC had a notably high antioxidant activity with IC50 of 0.302 mg/mL to DPPH radical scavenging assay. These results reaffirm the enhancement in antimicrobial properties when Ag/V2O5 and curdlan work together and agree with the objective of this work to propose novel and worthwhile nanomaterials for potentially applicable areas like food packaging or agriculture with insignificant harm to the environment.
Collapse
Affiliation(s)
- Yasser A Shaban
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed I Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adnan J Turki
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hajer S Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Modi Al-Boqami
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanan I Althagbi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Walied M Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Klimek K, Terpilowska S, Michalak A, Bernacki R, Nurzynska A, Cucchiarini M, Tarczynska M, Gaweda K, Głuszek S, Ginalska G. Modern Approach to Testing the Biocompatibility of Osteochondral Scaffolds in Accordance with the 3Rs Principle─Preclinical In Vitro, Ex Vivo, and In Vivo Studies Using the Biphasic Curdlan-Based Biomaterial. ACS Biomater Sci Eng 2025; 11:845-865. [PMID: 39832791 DOI: 10.1021/acsbiomaterials.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The aim of this work is to provide a comprehensive set of biological tests to assess the biomedical potential of novel osteochondral scaffolds with methods proposed to comply with the 3Rs principle, focusing here on a biphasic Curdlan-based osteochondral scaffold as a promising model biomaterial. In vitro experiments include the evaluation of cytotoxicity, mutagenicity, and genotoxicity referring to ISO standards, the assessment of the viability and proliferation of human chondrocytes and osteoblasts, and the estimation of inflammation after direct contact of biomaterials with human macrophages. Ex vivo experiments include assessments of the response of the surrounding osteochondral tissue after incubation with the implanted biomaterial. In vivo experiments involve an evaluation of the toxicity and regenerative potential of the biomaterial in zebrafish (larvae and adults) and in osteochondral defects in dogs (veterinary patients). The applied set of tests allows us to show that the Curdlan-based scaffold does not induce cytotoxicity (cell viability close to 100%), mutagenicity (the level of reversion is not 2× higher compared to the control), and genotoxicity (it does not exhibit any change in chromosomal aberration; the frequency of micronuclei, micronucleated binucleated cells, and cytokinesis-block proliferation index is comparable to the control; moreover, it does not cause the formation of comets in cells). This biomaterial also promotes the viability and proliferation of chondrocytes and osteoblasts (the OD values between the fourth and seventh day of incubation increase by approximately 1.6×). The Curdlan-based scaffold stimulates only a transient inflammatory response in vitro and ex vivo. This biomaterial does not cause Danio rerio larvae malformation and also enables proper regeneration of the caudal fin in adults. Finally, it supports the regeneration of an osteochondral defect in veterinary patients. Thus, this is a proposal to use alternative methods for biological assessment of osteochondral scaffolds as opposed to commonly used tests using large numbers of laboratory animals.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Sylwia Terpilowska
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Jan Kochanowski University, Collegium Medicum, IX Wiekow Kielc 19A Av., 25-317 Kielce, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Rafal Bernacki
- Veterinary Clinic Aura, Debowa 31 Street, 86-065 Lochowo, Poland
| | - Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Kirrbergerstr. Bldg 37, 66421 Homburg/Saar, Germany
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Jan Kochanowski University, Collegium Medicum, IX Wiekow Kielc 19A Av., 25-317 Kielce, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
- Faculty of Health Sciences, Vincent Pol University, Choiny 2 Street, 20-816 Lublin, Poland
| |
Collapse
|
3
|
Ganie SA, Rather LJ, Assiri MA, Li Q. Recent innovations (2020-2023) in the approaches for the chemical functionalization of curdlan and pullulan: A mini-review. Int J Biol Macromol 2024; 260:129412. [PMID: 38262826 DOI: 10.1016/j.ijbiomac.2024.129412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Chemical modification represents a highly efficacious approach for enhancing the physicochemical characteristics and biological functionalities of natural polysaccharides. However, not all polysaccharides have considerable pharmacologic activity; so, appropriate chemical modification strategies can be selected in accordance with the distinct structural properties of polysaccharides to aid in improving and encouraging the presentation of their biological activities. Hence, there has been a growing interest in the chemical alteration of polysaccharides due to their various properties such as antioxidant, anticoagulant, antiviral, anticancer, biomedical, antibacterial, and immunomodulatory effects. This paper offers a comprehensive examination of recent scientific advancements produced over the past four years in the realm of unique chemical and functional modifications in curdlan and pullulan structures. This review aims to provide readers with an overview of the structural activity correlations observed in the backbone structures of curdlan and pullulan, as well as the diverse chemical modification processes employed for these polysaccharides. Additionally, the review aims to examine the effects of combining various bioactive molecules with chemically modified curdlan and pullulan and explore their potential applications in various important fields.
Collapse
Affiliation(s)
- Showkat Ali Ganie
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Luqman Jameel Rather
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Qing Li
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
4
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
5
|
Atanase LI. Biopolymers for Enhanced Health Benefits. Int J Mol Sci 2023; 24:16251. [PMID: 38003441 PMCID: PMC10671124 DOI: 10.3390/ijms242216251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The definition of the term biopolymer is often controversial, and there is no clear distinction between "biopolymers", "bioplastics", and "bio-based polymers" [...].
Collapse
Affiliation(s)
- Leonard-Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|