1
|
Zheng Y, Li J, Zhu H, Hu J, Sun Y, Xu G. Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE 153 acute co-exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110117. [PMID: 39725183 DOI: 10.1016/j.cbpc.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L-1 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE153), and 5 ng·L-1 BDE153 + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia. The results showed that the enzymatic activities of anti-oxidative (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory (TNFα, IL-1β) and apoptosis (caspase 3) significantly increased at 2 d in BDE153 and the combined group and together in BDE153 group at 8 d. Histological slice showed displaced nucleus by BDE153 exposure and vacuoles appeared in the combined groups. KEGG results revealed that pathways associated with endocytosis, protein processing in endoplasmic reticulum and regulation of actin cytoskeleton were significantly enriched. The selected genes associated with neurocentral development (ganab, diaph3/baiap2a/ddost decreased and increased), lipid metabolism (ldlrap1a decreased, stt3b increased), energy (agap2 decreased, uggt1 increased) were affected under co-exposure, and fibronectin significantly increased via proteome. Our study indicated that endocytosis, protein processing in endoplasmic reticulum, regulation of actin cytoskeleton were affected in tilapia liver under NPs and BDE153 co-exposure.
Collapse
Affiliation(s)
- Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| | - Jiajia Li
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| |
Collapse
|
2
|
Zulfahmi I, Akbar SA, Perdana AW, Adani KH, Admaja Nasution IA, Ali R, Nasution AW, Nafis B, Sumon KA, Rahman MM. Growth disorders, respiratory distress and skin discoloration in zebrafish (Danio rerio) after chronic exposure to Palm Oil Mill Effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125513. [PMID: 39662577 DOI: 10.1016/j.envpol.2024.125513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Understanding the environmental and health impacts of Palm Oil Mill Effluent (POME) contamination is essential for driving sustainable practices and innovation within the industry. In this study, we elaborated the chronic toxicity of POME on growth disorder, respiratory distress, and skin discoloration of zebrafish (Danio rerio). Zebrafish were exposed to three concentrations of POME (0 mL/L, 0.5 mL/L and 1.0 mL/L) for 28 days. Results revealed that an increase in POME concentration significantly reduced the weight gain, length gain, specific growth rate, specific length rate and oxygen consumption rate of zebrafish. In contrast, the opercular rate increased significantly. Skin discoloration in zebrafish exposed to POME were characterized by reduced red percentage value on the body and tail, increased green and blue percentages on the tail, and decreased brightness values. This result suggests crucial insights for the management and regulation of POME.
Collapse
Affiliation(s)
- Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala , Banda Aceh, 23111, Indonesia.
| | - Said Ali Akbar
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Adli Waliul Perdana
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Khalisah Huwaina Adani
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ihdina Alfi Admaja Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Rizwan Ali
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ayu Wulandari Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Badratun Nafis
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
3
|
Motivarash YB, Bhatt AJ, Jaiswar RR, Makrani RA, Dabhi RM. Seasonal variability of microplastic contamination in marine fishes of the state of Gujarat, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59852-59865. [PMID: 39361207 DOI: 10.1007/s11356-024-35208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Seasonal variation in microplastics abundance, occurrence, and distribution in pelagic and demersal fishes was observed in this study during December 2021 to November 2022. One hundred percent presence of microplastic in inedible (gut and gills) tissue, while 82% and 54% in edible tissue (muscle) of pelagic and demersal fishes respectively were seen. Post-monsoon period showed high prevalence of microplastics followed by monsoon and the least during pre-monsoon in both pelagic and demersal fishes. In pelagic fishes, the edible tissue had microplastics abundance of 1.56 to 13.34 numbers per 10 g of tissue whereas inedible tissue had 3.36 to 16.67 numbers per 10 g of tissue. In demersal fishes, the edible tissue had microplastics abundance of 1.04 to 5.26 numbers per 10 g of tissue while it was 2.67 to 8.34 numbers per 10 g of inedible tissue. There was significant variation in abundance of microplastic in edible and inedible tissue of all the fishes (Mann-Whitney test, p < 0.05). The most dominant microplastics size was 0.005-0.05 mm followed by 0.05-0.5 mm and the least of greater than 0.5 mm in pelagic and demersal fishes respectively. Taking microplastic shape into consideration, the most dominant was fiber followed by fragment and the film in inedible tissue of all the fishes. The edible tissue of all the fishes had only fiber in them (100% occurrence). The dominance of blue color microplastics was observed followed by red, green, yellow, and orange at least in edible as well as inedible tissues of the fishes. More than 99% microplastics polymer observed in this study include polyethylene (PE), polypropylene (PP), and polystyrene (PS); only less than 1% was unidentified. This is the first study done on seasonal variation of microplastic in the marine fish population of Gujarat waters, Northeast Arabian Sea. The study highlights the nature of micro-pollutant in marine environments, emphasizing the need for comprehensive monitoring and management strategies.
Collapse
Affiliation(s)
- Yagnesh B Motivarash
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India.
| | - Ashishkumar J Bhatt
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| | - Rahul R Jaiswar
- Department of Fish Pharmacology and Toxicology, Institute of Fisheries Post Graduate Studies, TNJFU, Chennai, India
| | - Rehanavaz A Makrani
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| | - Rajkumar M Dabhi
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| |
Collapse
|
4
|
Okeke ES, Nwankwo CE, Ezeorba TPC, Iloh VC, Enochoghene AE. Occurrence and ecotoxicological impacts of polybrominated diphenyl ethers (PBDEs) in electronic waste (e-waste) in Africa: Options for sustainable and eco-friendly management strategies. Toxicology 2024; 506:153848. [PMID: 38825032 DOI: 10.1016/j.tox.2024.153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent contaminants used as flame retardants in electronic products. PBDEs are contaminants of concern due to leaching and recalcitrance conferred by the stable and hydrophobic bromide residues. The near absence of legislatures and conscious initiatives to tackle the challenges of PBDEs in Africa has allowed for the indiscriminate use and consequent environmental degradation. Presently, the incidence, ecotoxicity, and remediation of PBDEs in Africa are poorly elucidated. Here, we present a position on the level of contamination, ecotoxicity, and management strategies for PBDEs with regard to Africa. Our review shows that Africa is inundated with PBDEs from the proliferation of e-waste due to factors like the increasing growth in the IT sector worsened by the procurement of second-hand gadgets. An evaluation of the fate of PBDEs in the African environment reveals that the environment is adequately contaminated, although reported in only a few countries like Nigeria and Ghana. Ultrasound-assisted extraction, microwave-assisted extraction, and Soxhlet extraction coupled with specific chromatographic techniques are used in the detection and quantification of PBDEs. Enormous exposure pathways in humans were highlighted with health implications. In terms of the removal of PBDEs, we found a gap in efforts in this direction, as not much success has been reported in Africa. However, we outline eco-friendly methods used elsewhere, including microbial degradation, zerovalent iron, supercritical fluid, and reduce, reuse, recycle, and recovery methods. The need for Africa to make and implement legislatures against PBDEs holds the key to reduced effect on the continent.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; College of Medicine and Veterinary Medicine, Deanery of Molecular, Genetic and Population Health Sciences, University of Edinburgh, United Kingdom.
| | - Chidiebele Emmanuel Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Veronica Chisom Iloh
- School of Pharmacy and Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | |
Collapse
|
5
|
Rong W, Chen Y, Xiong Z, Zhao H, Li T, Liu Q, Song J, Wang X, Liu Y, Liu S. Effects of combined exposure to polystyrene microplastics and 17α-Methyltestosterone on the reproductive system of zebrafish. Theriogenology 2024; 215:158-169. [PMID: 38070215 DOI: 10.1016/j.theriogenology.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Polystyrene microplastics (PS-MPs) are important carriers of pollutants in water. 17α-Methyltestosterone (MT) is a synthetic environmental endocrine disrupting chemical (EDC) with androgenic effects. To study the effects of PS-MPs and MT on zebrafish reproductive systems, zebrafish were exposed to 0 or 50 ng L-1 MT, 0.5 mg∙L-1 PS-MPs, or 50 ng∙L-1 MT + 0.5 mg∙L-1 PS-MPs for 21 d. The results showed that the different exposure reagents caused varying degrees of damage to the reproductive systems in zebrafish, with the extent of damage increasing as the exposure duration increased. Histological analysis of the gonads revealed that the ratio of mature oocytes and mature spermatozoa in the gonad decreased gradually with increased exposure time, with the ratio being Control > PS-MPs > MT > MT + PS-MPs in decreasing order. The results of quantitative real-time PCR (qRT‒PCR) showed that in female fish treated for 7 d, the expression of cyp11a mRNA was significantly reduced in all three treatment groups(MT, PS-MPs, and MT + PS-MPs), while in the group treated for 14 d with MT + PS-MPs, the expression of cyp19a1a and StAR mRNA was significantly increased. In male fish exposed for 21 d, the expression of cyp11a, cyp17a1, cyp19a1a, StAR, 3β-HSD, and 17β-HSD3 mRNA was significantly decreased in MT + PS-MPs. ELISA results showed that after 14 d of exposure, the levels of E2, LH, and FSH in the ovaries of female fish were significantly reduced in all three treatment groups. Similarly, the levels of T, E2, LH, and FSH in the testis of male fish were significantly reduced after 14 d of exposure to PS-MPs and MT + PS-MPs. Offspring of zebrafish exposed to MT and MT + PS-MPs exhibited delayed incubation time and slow development. The cross-generational toxicity of PS-MPs themselves may be negligible, but it can exacerbate the toxicity of MT, making the cross-generational effects more pronounced in the offspring, causing offspring mortality and malformations. Offspring of zebrafish exposed to MT and MT + PS-MPs exhibited delayed incubation time and slow development. In addition, MT caused malformations such as pericardial edema, yolk cysts, and spinal deformities in zebrafish during the incubation period.
Collapse
Affiliation(s)
- Weiya Rong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yue Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zijun Xiong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Haiyan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Tongyao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Jing Song
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xianzong Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yu Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Shaozhen Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, 030801, China.
| |
Collapse
|
6
|
Lan Y, Gao X, Xu H, Li M. 20 years of polybrominated diphenyl ethers on toxicity assessments. WATER RESEARCH 2024; 249:121007. [PMID: 38096726 DOI: 10.1016/j.watres.2023.121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.
Collapse
Affiliation(s)
- Yingying Lan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|