1
|
Shang Y, Liang Y, Zhang B, Wu W, Peng Y, Wang J, Zhang M, Niu C. Periostin-mediated activation of NF-κB signaling promotes tumor progression and chemoresistance in glioblastoma. Sci Rep 2025; 15:13955. [PMID: 40263417 PMCID: PMC12015317 DOI: 10.1038/s41598-025-92969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of diffuse glioma, characterized by high lethality. Temozolomide (TMZ)-based chemotherapy is a standard treatment for GBM, but development of chemoresistance poses a significant therapeutic challenge. Despite advances in understanding GBM biology, the mechanisms driving TMZ resistance remain unclear. Identifying vital molecular players involved in this resistance is crucial for developing new therapies. Our results indicated that periostin (POSTN) was significantly upregulated in GBM cell lines and patient samples, correlating with poorer clinical outcomes. POSTN overexpression enhanced GBM cell proliferation, migration, invasion, and chemoresistance, while lentiviral suppression of POSTN significantly reduced these behaviors. In vivo, bioluminescence imaging further confirmed the enhanced tumor growth associated with POSTN overexpression. Bioinformatics analysis was performed to explore the underlying molecular mechanism. The results revealed a strong correlation between POSTN and epithelial-mesenchymal transition (EMT) process and the tumor necrosis factor α (TNFα)-NF-κB signaling pathway. Moreover, exogenous POSTN silencing reduced IκB-kinase α (IKKα) phosphorylation, thereby decreasing NF-κB expression by limiting IκBα degradation. Collectively, our study demonstrated that POSTN-induced activation of NF-κB signaling and EMT processes promoted the malignancy and chemoresistance of GBM, suggesting that POSTN may serve as a reliable prognostic biomarker and potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Yu Shang
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yuxia Liang
- Department of Physical Examination, The First Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
| | - Beichen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yihao Peng
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jin Wang
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Ming Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chen Niu
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- Department of Information, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Manikandan C, Jaiswal AK. Therapeutic Potential of NF-κB Inhibition in Glioblastoma: Gene Therapy Approach with rAAV-5 Mediated IκBαM Overexpression. Mol Biotechnol 2025:10.1007/s12033-025-01418-4. [PMID: 40140181 DOI: 10.1007/s12033-025-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
Current treatment strategies for glioblastoma, including resection followed by concurrent chemotherapy/radiotherapy are not curative. Angiogenesis and hypoxia are two major factors responsible for GBM growth and resistance to existing therapies, leading to poor clinical outcomes. The transcription factor NF-κB induces tumour progression by activating genes associated with cell proliferation and angiogenesis. It is expressed constitutively in gliomas and is known to regulate the expression of HIF-1α and VEGF in GBM. As a result, NF-κB can be a potent target that can inhibit tumour growth/invasiveness by reducing hypoxia and angiogenesis, as well as preventing macrophage and microglia infiltration and generating inflammatory cytokines that cause gliomagenesis. AAV vectors are the typical transducing agents for gene therapy because they can infect a broad range of dividing and non-dividing cell types. AAVs have emerged as one of the most widely used methods for delivering genes into the central nervous system because of their broad range of infectivity, ability to induce long-term transgenic expression, and lack of toxicity. The present study aims to inhibit NF-κB activity by blocking its nuclear translocation via overexpression of IκBα utilising recombinant adeno-associated virus-5 plasmid as a gene therapy vector.
Collapse
Affiliation(s)
- Ceera Manikandan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, 632014, India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Wu M, Zhang Y, Wang X, Zhou Y. TAB2 Promotes Immune Escape and Chemoresistance Through NF-κB Pathway Activation in Cervical Cancer. J Cell Mol Med 2025; 29:e70522. [PMID: 40133221 PMCID: PMC11936726 DOI: 10.1111/jcmm.70522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Cervical cancer (CC) remains a major health challenge with high mortality rates due to chemoresistance and immune escape. However, the underlying mechanisms remain unclear. We investigated the role of TAB2 in CC using cisplatin-resistant and parental cell lines. Cell proliferation, migration, sphere formation and T cell-mediated killing assays were performed. Western blot and qRT-PCR analysed protein and mRNA expression. NF-κB pathway involvement was examined using the BAY 11-7082 inhibitor. TAB2 expression was significantly elevated in cisplatin-resistant CC cells. TAB2 overexpression promoted chemoresistance and immune escape through NF-κB pathway activation. Conversely, TAB2 knockdown or NF-κB inhibition sensitised resistant cells to cisplatin and enhanced T cell-mediated killing. The resistant phenotype could be rescued by restoring PD-L1 expression. Our findings reveal TAB2 as a critical regulator of both chemoresistance and immune escape in CC through NF-κB pathway activation. This suggests TAB2 as a potential therapeutic target for overcoming treatment resistance in CC.
Collapse
Affiliation(s)
- Man Wu
- Key Laboratory for Reproductive Medicine of Guangdong ProvinceThird Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yingying Zhang
- Key Laboratory for Reproductive Medicine of Guangdong ProvinceThird Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xuanhui Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Yijia Zhou
- Department of Obstetrics and GynecologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| |
Collapse
|
4
|
Ni K, Liu Y, DI P, Wang L, Huang H, Holsinger RMD, Kiang KMY, Jiao J. Chromobox protein homolog 7 suppresses the stem-like phenotype of glioblastoma cells by regulating the myosin heavy chain 9-NF-κB signaling pathway. Cell Death Discov 2025; 11:74. [PMID: 39988672 PMCID: PMC11847914 DOI: 10.1038/s41420-025-02362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Cancer stem cells (CSCs) are significant factors in the treatment resistance and recurrence of glioblastoma. Chromobox protein homolog 7 (CBX7) can inhibit the progression of various tumors, but its impact on the stem cell-like properties of glioblastoma cells remains unclear. Clinically, low levels of CBX7 are associated with poor prognosis and increased distant metastasis in glioblastoma patients, and this low expression is caused by methylation of the CBX7 promoter. Our current research indicates that CBX7 plays a key role in suppressing the stem-like phenotype of glioblastoma. In this study, through bioinformatics analysis, we found that CBX7 is the most significantly downregulated member of the CBX family in glioblastoma and is closely associated with the stem-like phenotype of glioblastoma cells. We show that CBX7 promotes the degradation of myosin heavy chain 9 (MYH9) protein through the ubiquitin-proteasome pathway via the polycomb repressive complex 1 (PRC1) and suppresses the stem-like phenotype of glioblastoma cells by inhibiting the nuclear factor kappa-B (NF-κB) signaling pathway. Furthermore, overexpression of MYH9 in glioblastoma cells reverses the inhibitory effects of CBX7 on migration, proliferation, invasion, and stemness of glioblastoma cells. In summary, CBX7 acts as a tumor suppressor by inhibiting the stem cell-like characteristics of glioblastoma. The CBX7-MYH9-NF-κB signaling axis may serve as a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Kaixiang Ni
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - Yuankun Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - Pinggang DI
- Department of Emergency, Wulian County People's Hospital, 262300, Rizhao, Shandong, China
| | - Lu Wang
- Department of Pathology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - Hui Huang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - R M Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Karrie Mei-Yee Kiang
- Division of Neurosurgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jiantong Jiao
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China.
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 214023, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
Contreras-Chávez GG, Zapi-Colin LA, Estrada JA, Contreras I, Estrada JA. Advances on the therapeutic potential of cell receptor activation in glioblastoma. Mol Biol Rep 2025; 52:207. [PMID: 39907852 DOI: 10.1007/s11033-025-10312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Glioblastoma multiforme is the most common and aggressive malignant brain tumor. Current therapies have been unable to improve life expectancy in patients. This cancer is frequently accompanied by overexpression of receptors, such as EGFR, VEGFR and TLRs, involved in the regulation of inflammation, cell proliferation, differentiation, and survival. The present review summarizes current knowledge from preclinical and clinical studies investigating the role of pattern recognition and tyrosine kinase receptors in glioblastoma development and evolution, and their possible use to improve treatment outcomes and patient survival.
Collapse
Affiliation(s)
- Gerson G Contreras-Chávez
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, México
| | - Luis A Zapi-Colin
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, México
| | - José A Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, México
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, México.
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Paseo Tollocan esq. Jesús Carranza s/n, Colonia Moderna de la Cruz, Toluca, C.P. 50180, México.
| | - José A Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Paseo Tollocan esq. Jesús Carranza s/n, Colonia Moderna de la Cruz, Toluca, C.P. 50180, México
| |
Collapse
|
6
|
Radhi JH, El-Hagrasy AMA, Almosawi SH, Alhashel A, Butler AE. The Role of Osteoprotegerin in Breast Cancer: Genetic Variations, Tumorigenic Pathways, and Therapeutic Potential. Cancers (Basel) 2025; 17:337. [PMID: 39941709 PMCID: PMC11815763 DOI: 10.3390/cancers17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
INTRODUCTION Osteoprotegerin (OPG), encoded by the TNFRSF11B gene, is linked to the development of breast cancer via several pathways, including interactions with the receptor activator of nuclear factor-κB (RANK) ligands, apoptosis-inducing proteins like TRAIL, and genetic variations such as single nucleotide polymorphisms (SNPs), directly altering gene expression. This review aims to investigate the role of OPG expression in breast cancer. METHODS A comprehensive literature search was conducted using PubMed Medline, Google Scholar, and ScienceDirect. Only full-text English publications from inception to September 2024 were included. RESULTS Studies have demonstrated that certain SNPs in the OPG gene, specifically rs3102735 and rs2073618, are linked to a higher risk of breast cancer development. Additionally, OPG's function as a TRAIL decoy receptor may inhibit the death of cancer cells. Furthermore, OPG in the serum and its interactions with BRCA mutations are being investigated for their potential influence on breast cancer progression. Studies have found that OPG promotes tumorigenesis by enhancing cell proliferation, angiogenesis, and aneuploidy in normal mammary epithelial cells. Moreover, OPG mediates the tumor-promoting effects of interleukin-1 beta and may serve as a biomarker for breast cancer risk, particularly in BRCA1 mutation carriers, through its role in dysregulated RANK signaling. Lastly, the use of recombinant OPG in mouse models has been found to exert anti-tumor effects. CONCLUSIONS In this review, the role of OPG in breast cancer is examined. OPG has a multifaceted role in breast cancer tumorigenesis and exerts its effects through genetic variations (SNPs), interactions with TNF-related apoptosis-inducing ligand (TRAIL), and the modulation of the pro-tumorigenic microenvironment effects of angiogenesis, cell survival, and metastasis. Additionally, OPG's dual role as a tumor suppressor and promoter serves as a possible therapeutic target to enhance apoptosis, limit bone metastasis, and modulate the tumor microenvironment. Whilst much is now known, further studies are necessary to fully delineate the role of OPG.
Collapse
Affiliation(s)
- Janan Husain Radhi
- School of Medicine, Royal College of Surgeons in Ireland—Medical University of Bahrain (RCSI Bahrain), Building No. 2441, Road 2835, Busaiteen P.O. Box 15503, Bahrain; (J.H.R.); (A.M.A.E.-H.); (S.H.A.)
| | - Ahmed Mohsen Abbas El-Hagrasy
- School of Medicine, Royal College of Surgeons in Ireland—Medical University of Bahrain (RCSI Bahrain), Building No. 2441, Road 2835, Busaiteen P.O. Box 15503, Bahrain; (J.H.R.); (A.M.A.E.-H.); (S.H.A.)
| | - Sayed Husain Almosawi
- School of Medicine, Royal College of Surgeons in Ireland—Medical University of Bahrain (RCSI Bahrain), Building No. 2441, Road 2835, Busaiteen P.O. Box 15503, Bahrain; (J.H.R.); (A.M.A.E.-H.); (S.H.A.)
| | - Abdullatif Alhashel
- School of Medicine, Royal College of Surgeons in Ireland—Medical University of Bahrain (RCSI Bahrain), Building No. 2441, Road 2835, Busaiteen P.O. Box 15503, Bahrain; (J.H.R.); (A.M.A.E.-H.); (S.H.A.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland—Medical University of Bahrain (RCSI Bahrain), Building No. 2441, Road 2835, Busaiteen P.O. Box 15503, Bahrain
| |
Collapse
|
7
|
Pandey P, Lakhanpal S, Mahmood D, Kang HN, Kim B, Kang S, Choi J, Choi M, Pandey S, Bhat M, Sharma S, Khan F, Park MN, Kim B. An updated review summarizing the anticancer potential of flavonoids via targeting NF-kB pathway. Front Pharmacol 2025; 15:1513422. [PMID: 39834817 PMCID: PMC11743680 DOI: 10.3389/fphar.2024.1513422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Nuclear factor-κB (NF-κB) cell signaling pathway is essential for the progression and development of numerous human disorders, including cancer. NF-κB signaling pathway regulates a wide range of physiological processes, such as cell survival, growth, and migration. Deregulated NF-kB signaling resulted in unregulated cell proliferation, viability, movement, and invasion, thus promoting tumor development. Recent findings have increasingly shown that plant derived phytochemicals that inhibit NF-κB signaling have the potential to be employed in cancer therapeutics. Flavonoids are a group of polyphenolic natural compounds present in various plants and their fruits, vegetables, and leaves. These compounds have numerous medicinal properties owing to their antioxidant, anti-inflammatory, antiviral, and antitumor characteristics. The main mechanism by which these flavonoids exhibit their anticancer potential is via potent antioxidative and immunomodulatory actions. Current research reports have demonstrated that these flavonoids exhibited their anticancer effects via suppressing the NF-κB signaling. Based on these facts, we have comprehensively outlined the cancer promoting role of NF-κB pathway in various processes including tumor progression, drug resistance, angiogenesis and metastasis. In addition to these, we also summarize the anticancer potential of flavonoids by specifically targeting the NF-κB pathway in various types of cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Byunggyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2024; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Wang J, Chen X, Wu D, Jia C, Lian Q, Pan Y, Yang J. Single-cell and machine learning approaches uncover intrinsic immune-evasion genes in the prognosis of hepatocellular carcinoma. LIVER RESEARCH 2024; 8:282-294. [PMID: 39958919 PMCID: PMC11771279 DOI: 10.1016/j.livres.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 11/01/2024] [Indexed: 02/18/2025]
Abstract
Background and aims Hepatocellular carcinoma (HCC) is a tumor of high heterogeneity and complexity, which poses significant challenges to effective treatment and patient prognosis because of its immune evasion characteristics. To address these issues, single-cell technology and machine learning methods have emerged as a promising approach to identify genes associated with immune escape in HCC. This study aimed to develop a prognostic risk score model for HCC by identifying intrinsic immune-evasion genes (IIEGs) through single-cell technology and machine learning, providing insights into immune infiltration, enhancing predictive accuracy, and facilitating the development of more effective treatment strategies. Materials and methods The study utilized data from The Cancer Genome Atlas database to analyze gene expression profiles and clinical data related to intrinsic immune evasion in patients with HCC. Various tools, including the Human Protein Atlas, cBioPortal, single-cell analysis, machine learning, and Kaplan-Meier plot, were used to analyze IIEGs. Functional enrichment analysis was conducted to explore potential mechanisms. In addition, the abundance of infiltrating cells in the tumor microenvironment was investigated using single-sample gene set enrichment analysis, CIBERSORT, xCELL, and tumor immunophenotype algorithms. The expression of glycosylphosphatidylinositol anchor attachment 1 (GPAA1) was examined in the clinical sample of HCC by quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemical staining. Results Univariate Cox analysis identified 63 IIEGs associated with the prognosis of HCC. Using random forest, least absolute shrinkage and selection operator regression analysis, and support vector machine, a risk score model consisting of six IIEGs (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), phosphatidylinositol glycan anchor biosynthesis class U (PIGU), endoplasmic reticulum membrane protein complex subunit 3 (EMC3), centrosomal protein 55 (CEP55), autophagy-related 10 (ATG10), and GPAA1) developed, which was validated using 10 pairs of HCC and adjacent non-cancerous samples. Based on the calculated median risk score, HCC samples were categorized into high- and low-risk groups. The Kaplan-Meier curve analysis showed that the high-risk group had a worse prognosis compared with the low-risk group. Time-dependent receiver operating characteristic analysis demonstrated the accurate predictive capability of the risk score model for HCC prognosis. Furthermore, immune infiltration analysis showed a positive correlation between the risk score model and 40 immune checkpoint genes as well as Th2 cells. Conclusions A prognostic risk score model was formulated by six IIEG signatures and showed promise in predicting the prognosis of patients diagnosed with HCC. The utilization of the IIEG risk score as a novel prognostic index, together with its significance as a valuable biomarker for immunotherapy in HCC, provides benefit for patients with HCC in determining therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Jiani Wang
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaopeng Chen
- Department of Hepatobiliary Surgery, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Donghao Wu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qinghai Lian
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhang Pan
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiumei Yang
- Medical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Ivanov SM, Lagunin AA, Tarasova OA. Analysis of transcription profiles for the identification of master regulators as the key players in glioblastoma. Comput Struct Biotechnol J 2024; 23:3559-3574. [PMID: 39963421 PMCID: PMC11832006 DOI: 10.1016/j.csbj.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 02/20/2025] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor with poor overall survival. Current treatment management for GBM has low efficacy, mainly due to high inter-patient heterogeneity. The transcription profiles in GBM define cell properties essential for tumor progression. We have developed an approach for the identification of master regulators (MRs) that are responsible for the gene expression changes in GBM. The approach is based on transcription factor enrichment analysis with subsequent "upstream" analysis in the signaling network. The main feature of the approach is that all calculations are performed for transcription profiles from individual samples, which allows taking into account GBM transcription heterogeneity. We identified 451 MRs that were up-regulated or down-regulated and, thus, were important parts of positive feedback loops. The number of MRs in the samples correlated with the degree of tumor immune infiltration, while the differences in MR profiles were generally consistent with the known GBM subtypes: mesenchymal, classical, and proneural. MRs densely interact with each other in the signaling network that may be associated with the robustness to pharmacological intervention. We identified 102 receptors among MRs, which is coherent with the importance of cell-cell interactions for GBM progression. The role of some of them in GBM is not currently investigated: lysophosphatidic acid receptors 5 and 6, sphingosine-1-phosphate receptor 4, lysophosphatidylserine receptors GPR34 and GPR174, and G protein-coupled receptors 84 and 132 for fatty acids. Information on the revealed MRs can be used to search for novel therapeutic strategies to treat GBM.
Collapse
Affiliation(s)
- Sergey M. Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow 117997, Russia
| | - Alexey A. Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow 117997, Russia
| | - Olga A. Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow 119121, Russia
| |
Collapse
|
11
|
Wang C, Han H, Cheng F, Wang H, Wang J, Lv C, Jiang S, Peng Y, Zhao X. Clinical significance and potential mechanism of AEBP1 in glioblastoma. J Neuropathol Exp Neurol 2024; 83:1020-1029. [PMID: 39190880 DOI: 10.1093/jnen/nlae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Glioblastomas (GBM), the most common primary brain tumor, lack accurate prognostic markers and have a poor prognosis. Our study was designed to identify effective biomarkers for GBM prognosis analysis and development of precise treatments. Differentially expressed genes (DEGs) between GBM patients and controls were analyzed from the Xena database and GEPIA. Based on the screened DEGs, univariate COX and LASSO regression analysis were performed to identify the most relevant genes associated with GBM prognosis. Genes highly expressed in GBM patients were selected to construct receiver operating characteristic analysis and enrichment analysis was constructed on groups of high and low expression of adipocyte enhancer-binding protein 1 (AEBP1). CIBERSORT, ssGSEA and ESTIMATE were used to perform immune infiltration analysis. About 3297 DEGs were identified using data from Xena database; 8 prognostic genes were identified. AEBP1, which plays a role in neuronal differentiation and development, was positively correlated in GBMs with immune infiltration; its high expression in cancer patients is associated with short overall survival and advanced tumor staging. This study suggests that AEBP1 could serve as a prognostic marker for GBMs and that patients with high expression may have a better response to immunotherapy.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Huan Han
- Department of Hematology, Xingtai People's Hospital, Xingtai, China
| | - Fang Cheng
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Hao Wang
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai, China
| | - Junlong Wang
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Chong Lv
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Shibin Jiang
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Yan Peng
- Department of Dermatology, Shahe City People's Hospital, Xingtai, China
| | - Xiaoling Zhao
- Department of Oncology, Xingtai People's Hospital, Xingtai, China
| |
Collapse
|
12
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9475-9502. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
13
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
14
|
Zhang B, Wang W, Song Y, Chen H, Lin X, Chen J, Chen Y, Huang J, Li D, Wu S. Exploring the Mechanism of Sempervirine Inhibiting Glioblastoma Invasion Based on Network Pharmacology and Bioinformatics. Pharmaceuticals (Basel) 2024; 17:1318. [PMID: 39458959 PMCID: PMC11510114 DOI: 10.3390/ph17101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Invasion is an important characteristic of the malignancy of glioblastoma (GBM) and a significant prognostic factor. Sempervirine (SPV), a yohimbine-type alkaloid, has been proven to inhibit GBM cells proliferation in previous research and found to have a potential effect in anti-invasion, but its mechanism of anti-invasion is still unknown. Methods: To explore its pharmacodynamics in inhibiting GBM cell invasion in this study, we combined network pharmacology and bioinformatics to comprehensive exploratory analysis of SPV and verified the mechanism in vitro. Results: Firstly, targets of SPV and invasion-related genes were collected from public databases. Moreover, GBM samples were obtained to analyze differentially expressed genes (DEGs) from The Cancer Genome Atlas (TCGA). Then, the relevant targets of SPV inhibiting GBM invasion (SIGI) were obtained through the intersection of the three gene sets. Further, GO and KEGG analysis showed that the targets of SIGI were heavily enriched in the AKT signaling pathway. Subsequently, based on the method of machine learning, a clinical prognostic model of the relevant targets of SIGI was constructed using GBM samples from TCGA and the Gene Expression Omnibus (GEO). A four-genes model (DUSP6, BMP2, MMP2, and MMP13) was successfully constructed, and Vina Scores of MMP2 and MMP13 in molecular docking were higher, which may be the main targets of SIGI. Then, the effect of SIGI was confirmed via functional experiments on invasion, migration, and adhesion assay, and the effect involved changes in the expressions of p-AKT, MMP2 and MMP13. Finally, combined with AKT activator (SC79) and inhibitor (MK2206), we further confirmed that SPV inhibits GBM invasion through AKT phosphorylation. Conclusions: This study provides valuable and an expected point of view into the regulation of AKT phosphorylation and inhibition of GBM invasion by SPV.
Collapse
Affiliation(s)
- Bingqiang Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Wenyi Wang
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Yu Song
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Huixian Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Xinxin Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Jingjing Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Ying Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Jinfang Huang
- Fuzhou First General Hospital, Fuzhou 350009, China;
| | - Desen Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Shuisheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| |
Collapse
|
15
|
Zhang L, He J, Zhao W, Zhou Y, Li J, Li S, Zhao W, Zhang L, Tang Z, Tan G, Chen S, Zhang B, Zhang YW, Wang Z. CD2AP promotes the progression of glioblastoma multiforme via TRIM5-mediated NF-kB signaling. Cell Death Dis 2024; 15:722. [PMID: 39353894 PMCID: PMC11445578 DOI: 10.1038/s41419-024-07094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
CD2-associated protein (CD2AP) is a scaffolding/adaptive protein that regulates intercellular adhesion and multiple signaling pathways. Although emerging evidence suggests that CD2AP is associated with several malignant tumors, there is no study investigating the expression and biological significance of CD2AP in glioblastoma multiforme (GBM). Here by studying public datasets, we found that CD2AP expression was significantly elevated in GBM and that glioma patients with increased CD2AP expression had a worse prognosis. We also confirmed the increase of CD2AP expression in clinical GBM samples and GBM cell lines. CD2AP overexpression in GBM cells promoted their proliferation, colony formation, migration, and invasion in vitro and their tumorigenesis in vivo, and reduced cell apoptosis both at basal levels and in response to temozolomide. While CD2AP knockdown had the opposite effects. Mechanistically, we revealed that CD2AP interacted with TRIM5, an NF-κB modulator. CD2AP overexpression and knockdown increased and decreased TRIM5 levels as well as the NF-κB activity, respectively. Moreover, downregulation of TRIM5 reversed elevated NF-κB activity in GBM cells with CD2AP overexpression; and inhibition of the NF-κB activity attenuated malignant features of GBM cells with CD2AP overexpression. Our findings demonstrate that CD2AP promotes GBM progression through activating TRIM5-mediated NF-κB signaling and that downregulation of CD2AP can attenuate GBM malignancy, suggesting that CD2AP may become a biomarker and the CD2AP-TRIM5-NF-κB axis may become a therapeutic target for GBM.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Jiawei He
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wentao Zhao
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shaobo Li
- Department of Neurosurgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingliang Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ziqian Tang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guowei Tan
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Neurosurgical Quality Control Center, Xiamen, China.
| |
Collapse
|
16
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
17
|
Gan Q, Li Y, Li Y, Liu H, Chen D, Liu L, Peng C. Pathways and molecules for overcoming immunotolerance in metastatic gastrointestinal tumors. Front Immunol 2024; 15:1359914. [PMID: 38646539 PMCID: PMC11026648 DOI: 10.3389/fimmu.2024.1359914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Worldwide, gastrointestinal (GI) cancer is recognized as one of the leading malignancies diagnosed in both genders, with mortality largely attributed to metastatic dissemination. It has been identified that in GI cancer, a variety of signaling pathways and key molecules are modified, leading to the emergence of an immunotolerance phenotype. Such modifications are pivotal in the malignancy's evasion of immune detection. Thus, a thorough analysis of the pathways and molecules contributing to GI cancer's immunotolerance is vital for advancing our comprehension and propelling the creation of efficacious pharmacological treatments. In response to this necessity, our review illuminates a selection of groundbreaking cellular signaling pathways associated with immunotolerance in GI cancer, including the Phosphoinositide 3-kinases/Akt, Janus kinase/Signal Transducer and Activator of Transcription 3, Nuclear Factor kappa-light-chain-enhancer of activated B cells, Transforming Growth Factor-beta/Smad, Notch, Programmed Death-1/Programmed Death-Ligand 1, and Wingless and INT-1/beta-catenin-Interleukin 10. Additionally, we examine an array of pertinent molecules like Indoleamine-pyrrole 2,3-dioxygenase, Human Leukocyte Antigen G/E, Glycoprotein A Repetitions Predominant, Clever-1, Interferon regulatory factor 8/Osteopontin, T-cell immunoglobulin and mucin-domain containing-3, Carcinoembryonic antigen-related cell adhesion molecule 1, Cell division control protein 42 homolog, and caspases-1 and -12.
Collapse
Affiliation(s)
- Qixin Gan
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Yue Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuejun Li
- Department of Oncology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Haifen Liu
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Daochuan Chen
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Lanxiang Liu
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Churan Peng
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| |
Collapse
|
18
|
Lei Y, Zhang R, Cai F. Role of MARK2 in the nervous system and cancer. Cancer Gene Ther 2024; 31:497-506. [PMID: 38302729 DOI: 10.1038/s41417-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
19
|
Rizvi SMD, Almazni IA, Moawadh MS, Alharbi ZM, Helmi N, Alqahtani LS, Hussain T, Alafnan A, Moin A, Elkhalifa AO, Awadelkareem AM, Khalid M, Tiwari RK. Targeting NF-κB signaling cascades of glioblastoma by a natural benzophenone, garcinol, via in vitro and molecular docking approaches. Front Chem 2024; 12:1352009. [PMID: 38435669 PMCID: PMC10904546 DOI: 10.3389/fchem.2024.1352009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024] Open
Abstract
Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM.
Collapse
Affiliation(s)
- Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Ibrahim A. Almazni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mamdoh S. Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Zeyad M. Alharbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Ha’il, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Ha’il, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Budh Nagar, India
| |
Collapse
|