1
|
Raihan FR, Abdulrazak LF, Rahman MA, Ali MM, Ibrahim SM, Ahmed K, Bui FM, Mahmud I. StackTHP: A stacking ensemble model for accurate prediction of tumor-homing peptides in cancer therapy. Comput Biol Med 2025; 189:109958. [PMID: 40048897 DOI: 10.1016/j.compbiomed.2025.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
The tumor-homing peptides (THPs) have emerged as one of the attractive resources for targeted cancer therapy, being able to bind and penetrate tumor cells selectively while ignoring adjacent healthy tissues. Therefore, the computational models to predict THPs became popular very rapidly, since laboratory methods are slow and resourceful. Herein, we are proposing StackTHP, a newly developed stacking-ensemble model aimed at further improving THP prediction accuracy. StackTHP implements multiple feature extraction methods, including amino acid composition (AAC), and pseudo amino acid composition (PAAC) together with classical machine learning classifiers like Extra Trees, Random Forest, and AdaBoost, while the logistic regression-based meta-classifier is used for the stacking framework. StackTHP outperformed all other models, producing an accuracy of 91.92 %, Matthew's correlation coefficient (MCC) of 0.8415, AUC of 0.977 on benchmark datasets, indicates that it is better than approaches attempted earlier and provides a robust solution for proceeding towards the discovery and development of peptide-based cancer therapies. Future research will focus on the application of StackTHP over more diverse sets of data along with some hybrid methods to enhance the prediction capability. The dataset and the code are available at the following link: https://github.com/Ashikur562/StackTHP.
Collapse
Affiliation(s)
- Fazla Rabby Raihan
- Department of Software Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka, 1216, Bangladesh.
| | - Lway Faisal Abdulrazak
- Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq; Department of Computer Science, Cihan University Sulaimaniya, Sulaimaniya, 46001, Kurdistan Region, Iraq.
| | - Md Ashikur Rahman
- Department of Software Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka, 1216, Bangladesh.
| | - Md Mamun Ali
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia.
| | - Kawsar Ahmed
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada; Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka, 1216, Bangladesh.
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| | - Imran Mahmud
- Department of Software Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka, 1216, Bangladesh.
| |
Collapse
|
2
|
Asim MN, Asif T, Mehmood F, Dengel A. Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance. Comput Biol Med 2025; 188:109821. [PMID: 39987697 DOI: 10.1016/j.compbiomed.2025.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Peptides are gaining significant attention in diverse fields such as the pharmaceutical market has seen a steady rise in peptide-based therapeutics over the past six decades. Peptides have been utilized in the development of distinct applications including inhibitors of SARS-COV-2 and treatments for conditions like cancer and diabetes. Distinct types of peptides possess unique characteristics, and development of peptide-specific applications require the discrimination of one peptide type from others. To the best of our knowledge, approximately 230 Artificial Intelligence (AI) driven applications have been developed for 22 distinct types of peptides, yet there remains significant room for development of new predictors. A Comprehensive review addresses the critical gap by providing a consolidated platform for the development of AI-driven peptide classification applications. This paper offers several key contributions, including presenting the biological foundations of 22 unique peptide types and categorizes them into four main classes: Regulatory, Therapeutic, Nutritional, and Delivery Peptides. It offers an in-depth overview of 47 databases that have been used to develop peptide classification benchmark datasets. It summarizes details of 288 benchmark datasets that are used in development of diverse types AI-driven peptide classification applications. It provides a detailed summary of 197 sequence representation learning methods and 94 classifiers that have been used to develop 230 distinct AI-driven peptide classification applications. Across 22 distinct types peptide classification tasks related to 288 benchmark datasets, it demonstrates performance values of 230 AI-driven peptide classification applications. It summarizes experimental settings and various evaluation measures that have been employed to assess the performance of AI-driven peptide classification applications. The primary focus of this manuscript is to consolidate scattered information into a single comprehensive platform. This resource will greatly assist researchers who are interested in developing new AI-driven peptide classification applications.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany.
| | - Tayyaba Asif
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Faiza Mehmood
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Institute of Data Sciences, University of Engineering and Technology, Lahore, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| |
Collapse
|
3
|
Guan J, Dong D, Xie P, Zhao Z, Guo Y, Lee TY, Yao L, Chiang YC. StackDILI: Enhancing Drug-Induced Liver Injury Prediction through Stacking Strategy with Effective Molecular Representations. J Chem Inf Model 2025; 65:1027-1039. [PMID: 39786982 DOI: 10.1021/acs.jcim.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Drug-induced liver injury (DILI) is a major challenge in drug development, often leading to clinical trial failures and market withdrawals due to liver toxicity. This study presents StackDILI, a computational framework designed to accelerate toxicity assessment by predicting DILI risk. StackDILI integrates multiple molecular descriptors to extract structural and physicochemical features, including the constitution, pharmacophore, MACCS, and E-state descriptors. Additionally, a genetic algorithm is employed for feature selection and optimization, ensuring that the most relevant features are used. These optimized features are processed through a stacking ensemble model comprising multiple tree-based machine learning models, improving prediction accuracy and interpretability. Notably, StackDILI demonstrates a strong performance on the DILIrank test set and maintains robustness across cross-validation. Moreover, interpretability analysis reveals key molecular features associated with DILI risks, providing valuable insights into toxicity prediction. To further improve accessibility, a user-friendly web interface is developed, allowing users to input SMILES strings and receive rapid predictions with ease. The StackDILI model provides a powerful tool for efficient DILI assessment, supporting safer drug development. The web interface is accessible at https://awi.cuhk.edu.cn/biosequence/StackDILI/.
Collapse
Affiliation(s)
- Jiahui Guan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Danhong Dong
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Zhihao Zhao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Yilin Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| |
Collapse
|
4
|
Zhang M, Zhou J, Wang X, Wang X, Ge F. DeepBP: Ensemble deep learning strategy for bioactive peptide prediction. BMC Bioinformatics 2024; 25:352. [PMID: 39528950 PMCID: PMC11556071 DOI: 10.1186/s12859-024-05974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Bioactive peptides are important bioactive molecules composed of short-chain amino acids that play various crucial roles in the body, such as regulating physiological processes and promoting immune responses and antibacterial effects. Due to their significance, bioactive peptides have broad application potential in drug development, food science, and biotechnology. Among them, understanding their biological mechanisms will contribute to new ideas for drug discovery and disease treatment. RESULTS This study employs generative adversarial capsule networks (CapsuleGAN), gated recurrent units (GRU), and convolutional neural networks (CNN) as base classifiers to achieve ensemble learning through voting methods, which not only obtains high-precision prediction results on the angiotensin-converting enzyme (ACE) inhibitory peptides dataset and the anticancer peptides (ACP) dataset but also demonstrates effective model performance. For this method, we first utilized the protein language model-evolutionary scale modeling (ESM-2)-to extract relevant features for the ACE inhibitory peptides and ACP datasets. Following feature extraction, we trained three deep learning models-CapsuleGAN, GRU, and CNN-while continuously adjusting the model parameters throughout the training process. Finally, during the voting stage, different weights were assigned to the models based on their prediction accuracy, allowing full utilization of the model's performance. Experimental results show that on the ACE inhibitory peptide dataset, the balanced accuracy is 0.926, the Matthews correlation coefficient (MCC) is 0.831, and the area under the curve is 0.966; on the ACP dataset, the accuracy (ACC) is 0.779, and the MCC is 0.558. The experimental results on both datasets are superior to existing methods, demonstrating the effectiveness of the experimental approach. CONCLUSION In this study, CapsuleGAN, GRU, and CNN were successfully employed as base classifiers to implement ensemble learning, which not only achieved good results in the prediction of two datasets but also surpassed existing methods. The ability to predict peptides with strong ACE inhibitory activity and ACPs more accurately and quickly is significant, and this work provides valuable insights for predicting other functional peptides. The source code and dataset for this experiment are publicly available at https://github.com/Zhou-Jianren/bioactive-peptides .
Collapse
Affiliation(s)
- Ming Zhang
- School of Computer, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang, 212100, China.
| | - Jianren Zhou
- School of Computer, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang, 212100, China
| | - Xiaohua Wang
- School of Computer, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang, 212100, China
| | - Xun Wang
- School of Computer, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang, 212100, China
| | - Fang Ge
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
5
|
Yang S, Xu P. LLM4THP: a computing tool to identify tumor homing peptides by molecular and sequence representation of large language model based on two-layer ensemble model strategy. Amino Acids 2024; 56:62. [PMID: 39404804 PMCID: PMC11480143 DOI: 10.1007/s00726-024-03422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Tumor homing peptides (THPs) have a distinctive capacity to specifically attach to tumor cells, providing a promising approach for targeted cancer treatment and detection. Although THPs have the potential for significant impact, their detection by conventional methods is both time-consuming and expensive. To tackle this issue, we provide LLM4THP, an innovative computational approach that utilizes large language models (LLMs) to quickly and effectively detect THPs. LLM4THP utilizes two protein LLMs, ESM2 and Prot_T5_XL_UniRef50, to encode peptide sequences. This allows for the capture of complex patterns and relationships within the peptide data. In addition, we utilize inherent sequence characteristics such as Amino Acid Composition (AAC), Pseudo Amino Acid Composition (PAAC), Amphiphilic Pseudo Amino Acid Composition (APAAC), and Composition, Transition, and Distribution (CTD) to improve the representation of peptides. The RDKitDescriptors feature representation approach transforms peptide sequences into molecular objects and computes chemical characteristics, resulting in enhanced THP identification. The LLM4THP ensemble strategy incorporates various features into a two-layer learning architecture. The first layer consists of LightGBM, XGBoost, Random Forest, and Extremely Randomized Trees, which generate a set of meta results. The second layer utilizes Logistic Regression to further refine the identification of sequences as either THP or non-THP. LLM4THP exhibits exceptional performance compared to the most advanced methods, showcasing enhancements in accuracy, Matthew's correlation coefficient, F1 score, area under the curve, and average precision. The source code and dataset can be accessed at the following URL: https://github.com/abcair/LLM4THP.
Collapse
Affiliation(s)
- Sen Yang
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, 213164, China
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Piao Xu
- College of Economics and Management, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
6
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
7
|
Guan J, Yao L, Xie P, Chung CR, Huang Y, Chiang YC, Lee TY. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. Brief Bioinform 2024; 25:bbae208. [PMID: 38706321 PMCID: PMC11070730 DOI: 10.1093/bib/bbae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Antiviral peptides (AVPs) have shown potential in inhibiting viral attachment, preventing viral fusion with host cells and disrupting viral replication due to their unique action mechanisms. They have now become a broad-spectrum, promising antiviral therapy. However, identifying effective AVPs is traditionally slow and costly. This study proposed a new two-stage computational framework for AVP identification. The first stage identifies AVPs from a wide range of peptides, and the second stage recognizes AVPs targeting specific families or viruses. This method integrates contrastive learning and multi-feature fusion strategy, focusing on sequence information and peptide characteristics, significantly enhancing predictive ability and interpretability. The evaluation results of the model show excellent performance, with accuracy of 0.9240 and Matthews correlation coefficient (MCC) score of 0.8482 on the non-AVP independent dataset, and accuracy of 0.9934 and MCC score of 0.9869 on the non-AMP independent dataset. Furthermore, our model can predict antiviral activities of AVPs against six key viral families (Coronaviridae, Retroviridae, Herpesviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae) and eight viruses (FIV, HCV, HIV, HPIV3, HSV1, INFVA, RSV, SARS-CoV). Finally, to facilitate user accessibility, we built a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼dbAMP/AVP/.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Lantian Yao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, 320317 Taoyuan, Taiwan
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
8
|
Guan J, Yao L, Chung CR, Xie P, Zhang Y, Deng J, Chiang YC, Lee TY. Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning. J Chem Inf Model 2023; 63:7886-7898. [PMID: 38054927 DOI: 10.1021/acs.jcim.3c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Inflammation is a biological response to harmful stimuli, aiding in the maintenance of tissue homeostasis. However, excessive or persistent inflammation can precipitate a myriad of pathological conditions. Although current treatments such as NSAIDs, corticosteroids, and immunosuppressants are effective, they can have side effects and resistance issues. In this backdrop, anti-inflammatory peptides (AIPs) have emerged as a promising therapeutic approach against inflammation. Leveraging machine learning methods, we have the opportunity to accelerate the discovery and investigation of these AIPs more effectively. In this study, we proposed an advanced framework by ensemble machine learning and deep learning for AIP prediction. Initially, we constructed three individual models with extremely randomized trees (ET), gated recurrent unit (GRU), and convolutional neural networks (CNNs) with attention mechanism and then used stacking architecture to build the final predictor. By utilizing various sequence encodings and combining the strengths of different algorithms, our predictor demonstrated exemplary performance. On our independent test set, our model achieved an accuracy, MCC, and F1-score of 0.757, 0.500, and 0.707, respectively, clearly outperforming other contemporary AIP prediction methods. Additionally, our model offers profound insights into the feature interpretation of AIPs, establishing a valuable knowledge foundation for the design and development of future anti-inflammatory strategies.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yilun Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Junyang Deng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
9
|
Zhang J, Leung ELH. Natural Anticancer Molecules and Their Therapeutic Potential. Int J Mol Sci 2023; 24:16066. [PMID: 38003270 PMCID: PMC10671740 DOI: 10.3390/ijms242216066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer poses a significant global public health challenge [...].
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Elaine Lai-Han Leung
- Faculty of Health Sciences, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| |
Collapse
|