1
|
Nie T, Li J, You L, Wu Q. Environmental mycotoxins: A potential etiological factor for neurodegenerative diseases? Toxicology 2025; 511:154056. [PMID: 39814257 DOI: 10.1016/j.tox.2025.154056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Mycotoxins are potential environmental risk factors for neurodegenerative diseases. These toxins penetrate the central nervous system via a compromised blood-brain barrier, which may cause oxidative stress and neuroinflammation, these can also contribute to amyloid-beta (Aβ) plaque accumulation, Tau protein hyperphosphorylation, and neurofibrillary tangle formation. Mycotoxins also activate microglia, cause neuronal apoptosis, and disrupt central nervous system function. This study examines the evidence linking mycotoxin exposure to neurodegenerative disorders like Alzheimer's and Parkinson's diseases. We explore mechanisms such as oxidative stress, mitochondrial dysfunction, blood-brain barrier disruption, neuroinflammation, and direct neurotoxic effects. Epidemiological studies show regional variations in mycotoxin prevalence and corresponding neurodegenerative disease incidences, supporting this association. We also review current approaches to mitigate mycotoxin exposure and discuss the challenges and opportunities in developing strategies to prevent or slow neurodegenerative disease progression. This work highlights the need for increased awareness and research on mycotoxins as modifiable risk factors in neurological health.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
2
|
Spencer PS, Valdes Angues R, Palmer VS. Response to letter from Catamo, Costa, Buque & Nzwalo (2024) titled "Possible role of mycotoxins, malnutrition and MECP2 dysregulation in nodding syndrome" regarding Spencer, Valdes Angues & Palmer's paper titled "Nodding syndrome: A role for environmental biotoxins that dysregulate MECP2 expression?" JNS. 2024;462:123077. Doi: 10.1016/j.jns.2024.123077. J Neurol Sci 2024; 466:123262. [PMID: 39362114 DOI: 10.1016/j.jns.2024.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Third World Medical Research Foundation, Portland, OR, USA; Chair, Environmental Neurology Specialty Group, World Federation of Neurology, USA.
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Valerie S Palmer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Third World Medical Research Foundation, Portland, OR, USA.
| |
Collapse
|
3
|
Yang C, Jiang W, Su D, Yang C, Yuan Q, Kang C, Xiao C, Wang L, Peng C, Zhou T, Zhang J. Contamination of the traditional medicine Radix Dipsaci with aflatoxin B1 impairs hippocampal neurogenesis and cognitive function in a mouse model of osteoporosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116831. [PMID: 39151374 DOI: 10.1016/j.ecoenv.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Aflatoxin B1, which can penetrate the blood-brain barrier and kill neural cells, can contaminate traditional herbal medicines, posing a significant risk to human health. The present study examined cellular, cognitive and behavioral consequences of aflatoxin B1 contamination of the anti-osteoporotic medicine Radix Dipsaci. METHODS A mouse model of osteoporosis was created by treating the animals with all-trans-retinoic acid. Then the animals were treated intragastically with water decoctions of Radix Dipsaci that contained detectable aflatoxin B1 or not. The animals were compared in terms of mineral density and mineral salt content of bone, production of pro-inflammatory factors, neurogenesis and microglial activation in hippocampus, as well as behavior and cognitive function. RESULTS Contamination of Radix Dipsaci with aflatoxin B1 significantly reduced the medicine's content of bioactive saponins. It destroyed the ability of the herbal decoction to improve mineral density and mineral salt content in the bones of diseased mice, and it induced the production of the oxidative stress marker malondialdehyde as well as the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α. Aflatoxin B1 contamination inhibited formation of new neurons and increased the proportion of activated microglia in the hippocampus. These neurological changes were associated with anhedonia, behavioral despair, and deficits in short-term memory and social memory. CONCLUSION Contamination of Radix Dipsaci with aflatoxin B1 not only eliminates the herbal decoction's anti-osteoporotic effects, but it also induces neurotoxicity that can lead to cognitive decline and behavioral abnormalities. Such contamination should be avoided through tightly regulated production and quality control of medicinal herbs.
Collapse
Affiliation(s)
- Chengyan Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Dapeng Su
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Changgui Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chuanzhi Kang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Lulu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
4
|
Almanaa TN, Alwetaid MY, Bakheet SA, Attia SM, Ansari MA, Nadeem A, Ahmad SF. Aflatoxin B 1 exposure deteriorates immune abnormalities in a BTBR T + Itpr3 tf/J mouse model of autism by increasing inflammatory mediators' production in CD19-expressing cells. J Neuroimmunol 2024; 391:578365. [PMID: 38723577 DOI: 10.1016/j.jneuroim.2024.578365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficiencies in communication, repetitive and stereotyped behavioral patterns, and difficulties in reciprocal social engagement. The presence of immunological dysfunction in ASD has been well established. Aflatoxin B1 (AFB1) is a prevalent mycotoxin found in food and feed, causing immune toxicity and hepatotoxicity. AFB1 is significantly elevated in several regions around the globe. Existing research indicates that prolonged exposure to AFB1 results in neurological problems. The BTBR T+ Itpr3tf/J (BTBR) mice, which were used as an autism model, exhibit the primary behavioral traits that define ASD, such as repeated, stereotyped behaviors and impaired social interactions. The main objective of this work was to assess the toxic impact of AFB1 in BTBR mice. This work aimed to examine the effects of AFB1 on the expression of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 by CD19+ B cells in the spleen of the BTBR using flow cytometry. We also verified the impact of AFB1 exposure on the mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain of BTBR mice using real-time PCR. The findings of our study showed that the mice treated with AFB1 in the BTBR group exhibited a substantial increase in the presence of CD19+Notch-1+, CD19+IL-6+, CD19+MCP-1+, CD19+iNOS+, CD19+GM-CSF+, and CD19+NF-κB p65+ compared to the mice in the BTBR group that were treated with saline. Our findings also confirmed that administering AFB1 to BTBR mice leads to elevated mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain, in comparison to BTBR mice treated with saline. The data highlight that exposure to AFB1 worsens immunological abnormalities by increasing the expression of inflammatory mediators in BTBR mice.
Collapse
Affiliation(s)
- Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
5
|
Okoro N, Alilonu DO, Eze MC, Ebokaiwe AP. Aflatoxin B1-induced redox imbalance in the hippocampus and cerebral cortex of male Wistar rats is accompanied by altered cholinergic, indoleaminergic, and purinergic pathways: Abatement by dietary rutin. Toxicon 2024; 239:107595. [PMID: 38211804 DOI: 10.1016/j.toxicon.2024.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
The neurotoxic impact of dietary exposure to aflatoxin B1 (AFB1) is well documented in experimental studies. Rutin is a phytochemical with prominent anti-inflammatory and antioxidant activities. There is an information gap on the influence of rutin on AFB1-induced neurotoxicity. This study investigated the influence of rutin on neurobehavioral and biochemical abnormalities in male Wistar rats (six weeks old) orally treated with AFB1 (0.75, and 1.5 mg/kg body weight) or co-administered with rutin (50 mg/kg) for 30 uninterrupted days. Results indicate that AFB1-induced depression-like behavior by Tail Suspension Test (TST) and cognitive impairment by Y-maze was abated following rutin co-administration. Abatement of AFB1-induced decreases in acetylcholinesterase (AChE) activity, and increased antioxidant status, by rutin was accompanied by a marked reduction in oxidative stress markers and increased hydrolysis of the purinergic molecules in the cerebral cortex and hippocampus of rats. Additionally, rutin co-treatment abrogated AFB1-mediated elevation of interleukin-6 (IL-6), nitric oxide (NO) levels, and activity of myeloperoxidase (MPO). Correspondingly, rutin co-treatment lowered the activity and immunocontent of immunosuppressive indoleamine 2, 3-dioxygenase (IDO). Further, rutin co-treatment prevented histological injuries in the cerebral cortex and hippocampus. In conclusion, abatement of AFB1-induced neurobehavioral abnormalities by rutin involves the mechanisms of anti-inflammatory, antioxidant, and regulation of cholinergic, purinergic, and indoleaminergic pathways in rats.
Collapse
Affiliation(s)
- Nworie Okoro
- Department of Microbiology, Alex Ekwueme Federal University Ndufu Alike, Nigeria
| | - Doris Olachi Alilonu
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Nigeria
| | - Martina Chinazom Eze
- Department of Food Science and Technology, University of Nigeria Nsukka, Nigeria
| | - Azubuike Peter Ebokaiwe
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Nigeria.
| |
Collapse
|