1
|
Pinto H, Sánchez-Vizcaíno Mengual E. Exosomes in the Real World of Medical Aesthetics: A Review. Aesthetic Plast Surg 2024; 48:2513-2527. [PMID: 38315231 DOI: 10.1007/s00266-023-03844-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/30/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Exosomes are cell-derived nanovesicles that transport proteins, nucleic acids, and lipids and play a significant role in almost every physiological process in the human body. They have generated great interest, especially in the field of tissue regeneration. Studies in the last decade support their great regenerating and rejuvenating potential. However, the lack of standardized procedures, limited knowledge regarding their action mechanism, and little clinical evidence impair their implementation and approval in the medical setting. This review aimed to identify published studies and clinical trials using exosomes in human patients for clinical treatments in aesthetic medicine. MATERIALS AND METHODS A systematic search was conducted in the PubMed database using the search term "exosomes" and 25 terms related to aesthetic medicine treatments in human patients. Additionally, a search was conducted in the ClinicalTrials.gov database for interventional clinical trials using exosomes for aesthetic treatments in adults 18 to ≥ 65 years of age. RESULTS Nine articles were selected after debugging the initial list of published articles in which exosomes were related to Aesthetic Medicine (633 articles). Nine studies were identified from the initial search on ClinicalTrial.gov (104 trials with exosomes). CONCLUSIONS There is no doubt about the scientific basis of exosome regenerative potential and the growing interest in exosomes in Aesthetic Medicine. However, companies must spend more on research to develop standardized and reliable procedures to obtain exosomes for their approval and application in clinical practice. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 . This review highlights the large amount of published research on exosomes related to aesthetic medicine and, at the same time, the lack of products approved by regulatory agencies. Several issues have been suggested to elucidate a response, such as the need for standardized protocols and more knowledge to ensure safe treatments. It also highlights the few clinical trials conducted to evaluate exosome properties in aesthetic medicine treatments.
Collapse
Affiliation(s)
- Hernán Pinto
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Spain
| | | |
Collapse
|
2
|
Wang H, Ma C, Liu C, Sun L, Wang Y, Xue J, Zhao B, Dong W. The c-Fos/AP-1 inhibitor inhibits sulfur mustard-induced chondrogenesis impairment in zebrafish larvae. CHEMOSPHERE 2024; 359:142299. [PMID: 38761826 DOI: 10.1016/j.chemosphere.2024.142299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Sulfur mustard (SM, dichlorodiethyl sulfide) is a potent erosive chemical poison that can cause pulmonary lung, skin and eye disease complications in humans. Currently, there is no designated remedy for SM, and its operation's toxicological process remains unidentified. This work employed zebrafish as a model organism to investigate the toxic manifestations and mechanisms of exposure to SM, aiming to offer novel insights for preventing and treating this condition. The results showed that SM caused a decrease in the survival rate of the zebrafish larvae (LC50 = 2.47 mg/L), a reduction in the hatching rate, an increase in the pericardial area, and small head syndrome. However, T-5224 (a selective inhibitor of c-Fos/activator protein) attenuated the reduction in mortality (LC50 = 2.79 mg/L), the reduction in hatching rate, and the worsening of morphological changes. We discovered that SM causes cartilage developmental disorders in zebrafish larvae. The reverse transcription-quantitative polymerase chain reaction found that SM increased the expression of inflammation-related genes (IL-1β, IL-6, and TNF-α) and significantly increased cartilage development-related gene expression (fosab, mmp9, and atf3). However, the expression of sox9a, sox9b, and Col2a1a was reduced. The protein level detection also found an increase in c-fos protein expression and a significant decrease in COL2A1 expression. However, T-5224,also and mitigated the changes in gene expression, and protein levels caused by SM exposure. The results of this study indicate that SM-induced cartilage development disorders are closely related to the c-Fos/AP-1 pathway in zebrafish.
Collapse
Affiliation(s)
- Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chenglong Ma
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chunyu Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Lan Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jiangdong Xue
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
| |
Collapse
|
3
|
Zhou C, Wu Y, Wan S, Lou L, Gu S, Peng J, Zhao S, Hua X. Exosomes isolated from TNF-α-treated bone marrow mesenchymal stem cells ameliorate pelvic floor dysfunction in rats. J Cell Mol Med 2024; 28:e18451. [PMID: 38898783 PMCID: PMC11187403 DOI: 10.1111/jcmm.18451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSCs) can alleviate the symptoms of pelvic floor dysfunction (PFD) in rats. However, the potential therapeutical effects of exosomes derived from BMSCs treated with tumour necrosis factor (TNF)-α on the symptoms of PFD in rats are unknown. Exosomes extracted from BMSCs treated with or without TNF-α were applied to treat PFD rats. Our findings revealed a significant elevation in interleukin (IL)-6 and TNF-α, and matrix metalloproteinase-2 (MMP2) levels in the vaginal wall tissues of patients with pelvic organ prolapse (POP) compared with the control group. Daily administration of exosomes derived from BMSCs, treated either with or without TNF-α (referred to as Exo and TNF-Exo), resulted in increased void volume and bladder void pressure, along with reduced peak bladder pressure and leak point pressure in PFD rats. Notably, TNF-Exo treatment demonstrated superior efficacy in restoring void volume, bladder void pressure and the mentioned parameters compared with Exo treatment. Importantly, TNF-Exo exhibited greater potency than Exo in restoring the levels of multiple proteins (Elastin, Collagen I, Collagen III, IL-6, TNF-α and MMP2) in the anterior vaginal walls of PFD rats. The application of exosomes derived from TNF-α-treated BMSCs holds promise as a novel therapeutic approach for treating PFD.
Collapse
Affiliation(s)
- Chenchen Zhou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yuelin Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Sheng Wan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Liqun Lou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Shengyi Gu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jing Peng
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Shifeng Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|