1
|
Chen Q, Jin J, Li P, Wang X, Wang Q. Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies. Biomedicines 2025; 13:759. [PMID: 40149733 PMCID: PMC11940491 DOI: 10.3390/biomedicines13030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Gliomas are a type of highly heterogeneous and invasive central nervous system tumor. Traditional treatment methods have limited efficacy, and the prognosis for patients remains poor. Recent studies have revealed the crucial roles of several abnormal signaling pathways in the pathogenesis of gliomas, including the Receptor Tyrosine Kinase/Rat Sarcoma Virus Oncogene/Phosphatidylinositol-3-Kinase (RTK/RAS/PI3K) pathway, the Wingless-Related Integration Site/β-Catenin (Wnt/β-Catenin) pathway, the Hippo/YAP (Hippo/Yes-associated protein) pathway, and the Slit/Robo (Slit Guidance Ligands/Roundabout) signaling pathway. These pathways play extremely vital roles in tumor proliferation, invasion, and treatment resistance. This article comprehensively and systematically reviews the molecular mechanisms of these signaling pathways, deeply summarizing the research progress of various treatment strategies, including targeted inhibitors, gene therapy, and nanomedicine against them. Moreover, the combination of targeted therapy and personalized treatment regimens is expected to overcome the current treatment bottleneck and provide a more favorable survival prognosis for glioblastoma patients.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| | - Jin Jin
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| | - Pian Li
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| | - Xiuping Wang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| | - Qianyan Wang
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| |
Collapse
|
2
|
Xu L, Xuan H, Shi X. Dysregulation of the p300/CBP histone acetyltransferases in human cancer. Epigenomics 2025; 17:193-208. [PMID: 39929233 PMCID: PMC11812348 DOI: 10.1080/17501911.2024.2447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
p300 (E1A binding protein 300) and CBP (CREB-binding protein) are critical regulators of chromatin dynamics and gene expression, playing essential roles in various cellular processes, including proliferation, differentiation, apoptosis, and immune responses. These homologous histone acetyltransferases (HATs) function as transcriptional co-activators by acetylating histones and non-histone proteins. p300/CBP is essential for development, and dysregulation of p300 and CBP has been implicated in several human diseases, particularly cancer. Somatic mutations that inactivate p300/CBP are frequently observed across various cancer types. Additionally, other mutations leading to translocations or truncations of p300/CBP can result in enhanced catalytic activity, potentially representing novel gain-of-function mutations that promote tumor progression. In this review, we discuss the mechanisms underlying the regulation of p300/CBP HAT activity, its dysregulation in cancer, and the development of p300/CBP inhibitors and their potential in cancer therapies.
Collapse
Affiliation(s)
- Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
3
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
4
|
Zhou X, Gao F, Gao W, Wang Q, Li X, Li X, Li W, Liu J, Zhou H, Luo A, Chen C, Liu Z. Bismuth Sulfide Nanoflowers Facilitated miR339 Delivery to Overcome Stemness and Radioresistance through Ubiquitin-Specific Peptidase 8 in Esophageal Cancer. ACS NANO 2024; 18:19232-19246. [PMID: 38996055 DOI: 10.1021/acsnano.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Despite the superior efficacy of radiotherapy in esophageal squamous cell carcinoma (ESCC), radioresistance by cancer stem cells (CSCs) leads to recurrence, metastasis, and treatment failure. Therefore, it is necessary to develop CSC-based therapies to enhance radiotherapy. miR-339-5p (miR339) is involved in stem cell division and DNA damage checkpoint signaling pathways based on ESCC cohort. miR339 inhibited ESCC cell stemness and enhanced radiation-induced DNA damage by targeting USP8, suggesting that it acts as a potential CSC regulator and radiosensitizer. Considering the limited circulating periods and poor tumor-targeting ability of miRNA, a multifunctional nanoplatform based on bismuth sulfide nanoflower (Bi@PP) is developed to efficiently deliver miR339 and improve radioresistance. Intriguingly, Bi@PP encapsulates more miR339 owing to their flower-shaped structure, delivering more than 1000-fold miR339 into cells, superior to free miR339 alone. Besides being used as a carrier, Bi@PP is advantageous for dynamically monitoring the distribution of delivered miR339 in vivo while simultaneously inhibiting tumor growth. Additionally, Bi@PP/miR339 can significantly enhance radiotherapy efficacy in patient-derived xenograft models. This multifunctional platform, incorporating higher miRNA loading capacity, pH responsiveness, hypoxia relief, and CT imaging, provides another method to promote radiosensitivity and optimize ESCC treatment.
Collapse
Affiliation(s)
- Xuantong Zhou
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fene Gao
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Wenyan Gao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingzhen Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinyue Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenxin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huige Zhou
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
5
|
Tarle M, Lukšić I. Pathogenesis and Therapy of Oral Carcinogenesis. Int J Mol Sci 2024; 25:6343. [PMID: 38928050 PMCID: PMC11203620 DOI: 10.3390/ijms25126343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the head and neck with an extremely poor five-year survival rate of approximately 50 to 55%, despite significant advances in diagnostic and therapeutic procedures over the past three decades [...].
Collapse
Affiliation(s)
- Marko Tarle
- Department of Maxillofacial Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia;
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
7
|
Vukovic Đerfi K, Vasiljevic T, Matijevic Glavan T. Recent Advances in the Targeting of Head and Neck Cancer Stem Cells. APPLIED SCIENCES 2023; 13:13293. [DOI: 10.3390/app132413293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous cancer with a poor overall response to therapy. One of the reasons for this therapy resistance could be cancer stem cells (CSCs), a small population of cancer cells with self-renewal and tumor-initiating abilities. Tumor cell heterogeneity represents hurdles for therapeutic elimination of CSCs. Different signaling pathway activations, such as Wnt, Notch, and Sonic-Hedgehog (SHh) pathways, lead to the expression of several cancer stem factors that enable the maintenance of CSC features. Identification and isolation of CSCs are based either on markers (CD133, CD44, and aldehyde dehydrogenase (ALDH)), side populations, or their sphere-forming ability. A key challenge in cancer therapy targeting CSCs is overcoming chemotherapy and radiotherapy resistance. However, in novel therapies, various approaches are being employed to address this hurdle such as targeting cell surface markers, other stem cell markers, and different signaling or metabolic pathways, but also, introducing checkpoint inhibitors and natural compounds into the therapy can be beneficial.
Collapse
Affiliation(s)
- Kristina Vukovic Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tea Vasiljevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Kleszcz R. Advantages of the Combinatorial Molecular Targeted Therapy of Head and Neck Cancer-A Step before Anakoinosis-Based Personalized Treatment. Cancers (Basel) 2023; 15:4247. [PMID: 37686523 PMCID: PMC10486994 DOI: 10.3390/cancers15174247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular initiators of Head and Heck Squamous Cell Carcinoma (HNSCC) are complex. Human Papillomavirus (HPV) infection is linked to an increasing number of HNSCC cases, but HPV-positive tumors generally have a good prognosis. External factors that promote the development of HPV-negative HNSCC include tobacco use, excessive alcohol consumption, and proinflammatory poor oral hygiene. On a molecular level, several events, including the well-known overexpression of epidermal growth factor receptors (EGFR) and related downstream signaling pathways, contribute to the development of HNSCC. Conventional chemotherapy is insufficient for many patients. Thus, molecular-based therapy for HNSCC offers patients a better chance at a cure. The first molecular target for therapy of HNSCC was EGFR, inhibited by monoclonal antibody cetuximab, but its use in monotherapy is insufficient and induces resistance. This article describes attempts at combinatorial molecular targeted therapy of HNSCC based on several molecular targets and exemplary drugs/drug candidates. The new concept of anakoinosis-based therapy, which means treatment that targets the intercellular and intracellular communication of cancer cells, is thought to be the way to improve the clinical outcome for HNSCC patients. The identification of a link between molecular targeted therapy and anakoinosis raises the potential for further progress in HPV-negative HNSCC therapy.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznan, Poland
| |
Collapse
|
9
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|