1
|
Ayala-Cosme EG, Yang D, Vences K, Davis LO, Borgini M. State-of-the-Art Nrf2 Inhibitors: Therapeutic Opportunities in Non-Cancer Diseases. ChemMedChem 2024; 19:e202400377. [PMID: 39083752 DOI: 10.1002/cmdc.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Nuclear factor erythroid 2-related factor (Nrf2) is a cytoprotective transcription factor that induces the transcription of genes responsible for the cell's response to oxidative stress. While Nrf2 activation has led to the development of clinically relevant therapeutics, the oncogenic role of Nrf2 in the proliferation of cancer cells has underscored the complex nature of Nrf2 and the necessity for the development of Nrf2 inhibitors. Although the application of Nrf2 inhibitors appears limited as anticancer agents, recent studies have begun to pinpoint the impairment of autophagy in diseases as a cellular marker that shifts Nrf2 from a protective to a deleterious state. Therefore, the cytoplasmic accumulation of Nrf2 can lead to the accumulation of lipid hydroperoxides and, ultimately, to ferroptosis. However, some studies aimed at elucidating the role of Nrf2 in non-cancer diseases have yielded conflicting results, attributed to differences in approaches used to inhibit or activate Nrf2, as well as variations in in vitro and/or in vivo disease models. Overall, these results highlight the necessity for a deeper evaluation of Nrf2's role in diseases, especially chronic diseases. In this review, we discuss diseases where Nrf2 inhibition holds potential for beneficial therapeutic effects and summarize recently reported Nrf2 inhibitors exploiting medicinal chemistry approaches suitable for targeting transcription factors like Nrf2.
Collapse
Affiliation(s)
- Emil G Ayala-Cosme
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Deborah Yang
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Kyara Vences
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Lindsey O Davis
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Matteo Borgini
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| |
Collapse
|
2
|
Özdemir AY, Hofbauerová K, Kopecký V, Novotný J, Rudajev V. Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. Cell Mol Biol Lett 2024; 29:143. [PMID: 39551742 PMCID: PMC11572474 DOI: 10.1186/s11658-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
Collapse
Affiliation(s)
- Alp Yigit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
3
|
Chemello C, Facci L, Marcolin E, Ramaschi GE, Barbierato M, Giusti P, Bolego C, Zusso M. Fentanyl enhances immune cell response through TLR4/MD-2 complex. Front Pharmacol 2024; 15:1468644. [PMID: 39444612 PMCID: PMC11496304 DOI: 10.3389/fphar.2024.1468644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Opioids have been shown to induce neuroinflammation and immune cell activation, that might contribute to some of the opioid side effects, such as opioid-induced tolerance and paradoxical hyperalgesia. In this context, TLR4/MD-2 complex has been proposed as an off-target site for opioid action. This study was aimed at investigating the effect of fentanyl on lipopolysaccharide (LPS)-induced TLR4/MD-2 activation in rat primary microglia and human monocyte-derived macrophages (MDM). Materials and Methods The effect of fentanyl was first explored by measuring the expression and release of different proinflammatory mediators in primary rat microglia and human MDM by real-time PCR and ELISA. Then, the involvement of TLR4/MD-2 signaling was investigated studying NF-κB activation in HEK293 cells stably transfected with human TLR4, MD-2, and CD14 genes (HEK-Blue hTLR4 cells) and in human MDM. Results Fentanyl increased mRNA levels, as well as the LPS-induced secretion of proinflammatory mediators in primary microglia and MDM. Two inhibitors of TLR4/MD-2 signaling, namely the oxazoline derivative of N-palmitoylethanolamine (PEA-OXA) and CLI-095, blocked the production and release of proinflammatory cytokines by microglia stimulated with LPS and fentanyl, suggesting that TLR4/MD-2 could be the target of the proinflammatory activity of fentanyl. Finally, we showed that fentanyl in combination with LPS activated NF-κB signaling in human MDM and in HEK-Blue hTLR4 cells and this effect was blocked by inhibitors of TLR4/MD-2 complex. Discussion These results provide new insight into the mechanism of the proinflammatory activity of fentanyl, which involves the activation of TLR4/MD-2 signaling. Our findings might facilitate the development of novel inhibitors of TLR4/MD-2 signaling to combine with opioid-based analgesics for effective and safe pain management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
5
|
Liu X, Cai H, Peng L, Ma H, Yan Y, Li W, Zhao J. Microglial Nrf2/HO-1 signaling gates remifentanil-induced hyperalgesia via suppressing TRPV4-mediated M1 polarization. Free Radic Biol Med 2024; 214:87-100. [PMID: 38295888 DOI: 10.1016/j.freeradbiomed.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
Remifentanil-induced hyperalgesia (RIH) represents a significant clinical challenge due to the widespread use of opioids in pain management. However, the molecular and cellular mechanisms underlying RIH remain elusive. This study aimed to unravel the role of spinal cord microglia, focusing on the Nrf2/HO-1 signaling pathway and TRPV4 channels in the development of RIH. We used both in vivo and in vitro models to investigate the activation state of spinal cord microglia, the expression of TRPV4 channels, and the modulation of the Nrf2/HO-1 pathway under remifentanil exposure. In addition, we evaluated the potential therapeutic effects of dexmedetomidine, a perioperative α2-adrenergic agonist, on RIH and its related molecular pathways. Our results revealed a prominent role of spinal cord microglia in RIH, demonstrating an apparent microglial M1 polarization and increased TRPV4 channel expression. A notable observation was the downregulation of the Nrf2/HO-1 pathway, which was associated with increased neuroinflammation and mechanical allodynia. By upregulating or overexpressing Nrf2, we confirmed its ability to inhibit TRPV4 and thereby attenuate RIH-associated mechanical allodynia, M1 polarization, and neuroinflammation. Encouragingly, dexmedetomidine demonstrated therapeutic potential by positively modulating the Nrf2-TRPV4 nexus, attenuating mechanical allodynia, and reducing microglial inflammation. Our research highlights the critical role of spinal cord microglia in RIH mediated by the Nrf2-TRPV4 axis. The ability of dexmedetomidine to modulate this axis suggests its potential as an adjunctive therapy to remifentanil in mitigating RIH. Further studies are imperative to explore the broader implications and practical applicability of our findings.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huamei Cai
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Hongli Ma
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yun Yan
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Weixia Li
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
6
|
Pandey V, Yadav V, Srivastava A, Gaglani P, Singh R, Subhashini. Blocking μ-opioid receptor by naltrexone exaggerates oxidative stress and airway inflammation via the MAPkinase pathway in a murine model of asthma. Free Radic Biol Med 2024; 212:94-116. [PMID: 38142953 DOI: 10.1016/j.freeradbiomed.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Opioids regulate various physiological and pathophysiological functions, including cell proliferation, immune function, obesity, and neurodegenerative disorders. They have been used for centuries as a treatment for severe pain, binding to opioid receptors a specific G protein-coupled receptor. Common opioids, like β-endorphin, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), and dynorphins, have analgesic effects. The use of a potent antagonist, like naltrexone hydrochloride, to block the effects of mu Opioid Receptor (μOR) may result in the withdrawal of physiological effects and could potentially impact immune responses in many diseases including respiratory disease. Asthma is a respiratory disease characterized by airway hyperresponsiveness, inflammation, bronchoconstriction, chest tightness, stress generation and release of various cytokines. Airway inflammation leads recruitment and activation of immune cells releasing mediators, including opioids, which may modulate inflammatory response by binding to their respective receptors. The study aims to explore the role of μOR antagonist (naltrexone) in regulating asthma pathophysiology, as the regulation of immune and inflammatory responses in asthma remains unclear. Balb/c mice were sensitized intranasally by 1% TDI and challenged with 2.5% TDI. Naltrexone hydrochloride (1 mg/kg body weight) was administered through intraperitoneal route 1 h before TDI induction. Blocking μOR by naltrexone exacerbates airway inflammation by recruiting inflammatory cells (lymphocytes and neutrophils), enhancing intracellular Reactive oxygen species in bronchoalveolar lavage fluid (BALF), and inflammatory mediator (histamine, Eosinophil peroxidase and neutrophil elastase) in lungs. Naltrexone administration modulated inflammatory cytokines (TNF-α, IL-4, IL-5, IL-6, IL-10, and IL-17A), and enhanced IgE and CRP levels. Naltrexone administration also increased the expression of NF-κB, and phosphorylated p-P38, p-Erk, p-JNK and NF-κB by inhibiting the μOR. Docking study revealed good binding affinity of naltrexone with μOR compared to δ and κ receptors. In future it might elucidate potential therapeutic against many respiratory pathological disorders. In conclusion, μOR blocking by naltrexone regulates and implicates inflammation, bronchoconstriction, and lung physiology.
Collapse
Affiliation(s)
- Vinita Pandey
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Vandana Yadav
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Pratikkumar Gaglani
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Subhashini
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|