1
|
Shurygina AP, Shuklina M, Ozhereleva O, Romanovskaya-Romanko E, Kovaleva S, Egorov A, Lioznov D, Stukova M. Truncated NS1 Influenza A Virus Induces a Robust Antigen-Specific Tissue-Resident T-Cell Response and Promotes Inducible Bronchus-Associated Lymphoid Tissue Formation in Mice. Vaccines (Basel) 2025; 13:58. [PMID: 39852837 PMCID: PMC11769193 DOI: 10.3390/vaccines13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.), are unable to antagonise the innate immune response. This creates a self-adjuvant effect enhancing heterologous protection by inducing a robust CD8+ T-cell response together with immunoregulatory mechanisms. However, the effects of NS1 modifications on T-follicular helper (Tfh) and B-cell responses remain less understood. METHODS C57bl/6 mice were immunised intranasally with 10 μL of either an influenza virus containing a truncated NS1 protein (PR8/NS124), a cold-adapted influenza virus with a full-length NS1 (caPR8/NSfull), or a wild-type virus (PR8/NSfull). Immune responses were assessed on days 8 and 28 post-immunisation by flow cytometry, ELISA, and HAI assay. RESULTS In this study, we demonstrate that intranasal immunisation with PR8/NS124 significantly increases tissue-resident CD4+ and CD8+ T cells in the lungs and activates Tfh cells in regional lymph nodes as early as day 8 post-immunisation. These effects are not observed in mice immunised with caPR8/NSfull or PR8/NSfull. Notably, PR8/NS124 immunisation also leads to the development of inducible bronchus-associated lymphoid tissue (iBALT) in the lungs by day 28, characterised by the presence of antigen-specific Tfh cells and GL7+Fas+ germinal centre B cells. CONCLUSIONS Our findings further underscore the potential of NS1-truncated influenza viruses to drive robust mucosal immune responses and enhance vaccine efficacy.
Collapse
Affiliation(s)
- Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, Saint-Petersburg 197022, Russia; (M.S.); (O.O.); (E.R.-R.); (S.K.); (A.E.); (D.L.); (M.S.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Sergeeva MV, Vasilev K, Romanovskaya-Romanko E, Yolshin N, Pulkina A, Shamakova D, Shurygina AP, Muzhikyan A, Lioznov D, Stukova M. Mucosal Immunization with an Influenza Vector Carrying SARS-CoV-2 N Protein Protects Naïve Mice and Prevents Disease Enhancement in Seropositive Th2-Prone Mice. Vaccines (Basel) 2024; 13:15. [PMID: 39852794 PMCID: PMC11769390 DOI: 10.3390/vaccines13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame. Methods: We generated several FluVec-N recombinant vectors by reverse genetics and confirmed the vector's genetic stability, antigen expression in vitro, attenuation, and immunogenicity in a mouse model. We tested the protective potential of FluVec-N intranasal immunization in naïve mice and seropositive Th2-prone mice, primed with aluminium-adjuvanted inactivated SARS-CoV-2. Immune response in immunized and challenged mice was analyzed through serological methods and flow cytometry. Results: Double intranasal immunization of naïve mice with FluVec-N reduced weight loss and viral load in the lungs following infection with the SARS-CoV-2 beta variant. Mice primed with alum-adjuvanted inactivated coronavirus experienced substantial early weight loss and eosinophilia in the lungs during infection, demonstrating signs of enhanced disease. A single intranasal boost immunization with FluVec-N prevented the disease enhancement in primed mice by modulating the local immune response. Protection was associated with the formation of specific IgA and the early activation of virus-specific effector and resident CD8+ lymphocytes in mouse lungs. Conclusions: Our study supports the potential of immunization with influenza vector vaccines to prevent respiratory diseases and associated immunopathology.
Collapse
Affiliation(s)
- Mariia V. Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| | | | | | | | | | | | | | | | | | - Marina Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| |
Collapse
|
3
|
Wang Y, Wei X, Liu Y, Li S, Pan W, Dai J, Yang Z. Towards broad-spectrum protection: the development and challenges of combined respiratory virus vaccines. Front Cell Infect Microbiol 2024; 14:1412478. [PMID: 38903942 PMCID: PMC11188343 DOI: 10.3389/fcimb.2024.1412478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
In the post-COVID-19 era, the co-circulation of respiratory viruses, including influenza, SARS-CoV-2, and respiratory syncytial virus (RSV), continues to have significant health impacts and presents ongoing public health challenges. Vaccination remains the most effective measure for preventing viral infections. To address the concurrent circulation of these respiratory viruses, extensive efforts have been dedicated to the development of combined vaccines. These vaccines utilize a range of platforms, including mRNA-based vaccines, viral vector vaccines, and subunit vaccines, providing opportunities in addressing multiple pathogens at once. This review delves into the major advancements in the field of combined vaccine research, underscoring the strategic use of various platforms to tackle the simultaneous circulation of respiratory viruses effectively.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Xiaotong Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Customs Technology Center, Guangzhou, China
| | - Shengfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun Dai
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Customs Technology Center, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
4
|
Stepanova E, Isakova-Sivak I, Mezhenskaya D, Niskanen S, Matyushenko V, Bazhenova E, Rak A, Wong PF, Prokopenko P, Kotomina T, Krutikova E, Legotskiy S, Neterebskii B, Ostroukhova T, Sivak K, Orshanskaya Y, Yakovlev K, Rudenko L. Expression of the SARS-CoV-2 receptor-binding domain by live attenuated influenza vaccine virus as a strategy for designing a bivalent vaccine against COVID-19 and influenza. Virol J 2024; 21:82. [PMID: 38589848 PMCID: PMC11003101 DOI: 10.1186/s12985-024-02350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Influenza and SARS-CoV-2 are two major respiratory pathogens that cocirculate in humans and cause serious illness with the potential to exacerbate disease in the event of co-infection. To develop a bivalent vaccine, capable of protecting against both infections, we inserted the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein into hemagglutinin (HA) molecule or into the open reading frame of the truncated nonstructural protein 1 (NS1) of live attenuated influenza vaccine (LAIV) virus and assessed phenotypic characteristics of the rescued LAIV-RBD viruses, as well as their immunogenicity in mouse and Syrian hamster animal models. A panel of 9 recombinant LAIV-RBD viruses was rescued using the A/Leningrad/17 backbone. Notably, only two variants with RBD insertions into the HA molecule could express sufficient quantities of RBD protein in infected MDCK cells. Intranasal immunization of mice induced high levels of anti-influenza antibody responses in all chimeric LAIV-RBD viruses, which was comparable to the LAIV virus vector. The RBD-specific antibody responses were most pronounced in the variant expressing RBD194 fragment as a chimeric HA protein. This candidate was further tested in Syrian hamsters and was shown to be immunogenic and capable of protecting animals against both infections.
Collapse
Affiliation(s)
| | | | - Daria Mezhenskaya
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Sergei Niskanen
- Joint-Stock Company «BIOCAD» (JSC «BIOCAD») Saint Petersburg, Intracity Municipality the Settlement of Strelna, the Settlement of Strelna, ul. Svyazi, d. 38, str. 1, pomeshch. 89, Saint Petersburg, 198515, Russia
| | | | | | - Alexandra Rak
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Pei Fong Wong
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Polina Prokopenko
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Tatiana Kotomina
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Elena Krutikova
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Sergei Legotskiy
- Joint-Stock Company «BIOCAD» (JSC «BIOCAD») Saint Petersburg, Intracity Municipality the Settlement of Strelna, the Settlement of Strelna, ul. Svyazi, d. 38, str. 1, pomeshch. 89, Saint Petersburg, 198515, Russia
| | - Bogdan Neterebskii
- Joint-Stock Company «BIOCAD» (JSC «BIOCAD») Saint Petersburg, Intracity Municipality the Settlement of Strelna, the Settlement of Strelna, ul. Svyazi, d. 38, str. 1, pomeshch. 89, Saint Petersburg, 198515, Russia
| | - Tatiana Ostroukhova
- Joint-Stock Company «BIOCAD» (JSC «BIOCAD») Saint Petersburg, Intracity Municipality the Settlement of Strelna, the Settlement of Strelna, ul. Svyazi, d. 38, str. 1, pomeshch. 89, Saint Petersburg, 198515, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint Petersburg, 197376, Russia
| | - Yana Orshanskaya
- Smorodintsev Research Institute of Influenza, Saint Petersburg, 197376, Russia
| | - Kirill Yakovlev
- Smorodintsev Research Institute of Influenza, Saint Petersburg, 197376, Russia
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| |
Collapse
|
5
|
Guo H, Song Y, Li H, Hu H, Shi Y, Jiang J, Guo J, Cao L, Mao N, Zhang Y. A Mixture of T-Cell Epitope Peptides Derived from Human Respiratory Syncytial Virus F Protein Conferred Protection in DR1-TCR Tg Mice. Vaccines (Basel) 2024; 12:77. [PMID: 38250890 PMCID: PMC10820450 DOI: 10.3390/vaccines12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Human respiratory syncytial virus (HRSV) poses a significant disease burden on global health. To date, two vaccines that primarily induce humoral immunity to prevent HRSV infection have been approved, whereas vaccines that primarily induce T-cell immunity have not yet been well-represented. To address this gap, 25 predicted T-cell epitope peptides derived from the HRSV fusion protein with high human leukocyte antigen (HLA) binding potential were synthesized, and their ability to be recognized by PBMC from previously infected HRSV cases was assessed using an ELISpot assay. Finally, nine T-cell epitope peptides were selected, each of which was recognized by at least 20% of different donors' PBMC as potential vaccine candidates to prevent HRSV infection. The protective efficacy of F-9PV, a combination of nine peptides along with CpG-ODN and aluminum phosphate (Al) adjuvants, was validated in both HLA-humanized mice (DR1-TCR transgenic mice, Tg mice) and wild-type (WT) mice. The results show that F-9PV significantly enhanced protection against viral challenge as evidenced by reductions in viral load and pathological lesions in mice lungs. In addition, F-9PV elicits robust Th1-biased response, thereby mitigating the potential safety risk of Th2-induced respiratory disease during HRSV infection. Compared to WT mice, the F-9PV mice exhibited superior protection and immunogenicity in Tg mice, underscoring the specificity for human HLA. Overall, our results demonstrate that T-cell epitope peptides provide protection against HRSV infection in animal models even in the absence of neutralizing antibodies, indicating the feasibility of developing an HRSV T-cell epitope peptide-based vaccine.
Collapse
Affiliation(s)
- Hong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Hai Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Hongqiao Hu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Yuqing Shi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Jie Jiang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Jinyuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Naiying Mao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|