1
|
Golshan M, Dortaj H, Omidi Z, Golshan M, Pourentezari M, Rajabi M, Rajabi A. Cartilage repair: unleashing PRP's potential in organoid models. Cytotechnology 2025; 77:86. [PMID: 40190423 PMCID: PMC11968630 DOI: 10.1007/s10616-025-00739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Platelet-rich plasma (PRP) has emerged as a promising biological therapy in regenerative medicine due to its high concentration of growth factors and cytokines, which promote tissue healing and regeneration. In recent years, its application in cartilage tissue engineering has garnered significant attention. This study explores the synergistic interaction between PRP and cartilage organoids, a novel three-dimensional in vitro culture system that closely mimics the structural and functional properties of native cartilage. Cartilage organoids serve as a physiologically relevant model for studying cartilage development, disease progression, and regeneration. By integrating PRP with cartilage organoids, this review aims to enhance chondrogenesis, extracellular matrix synthesis, and cellular proliferation within the organoids. Emerging evidence suggests that PRP supplementation significantly improves chondrocyte viability, growth, and differentiation in cartilage organoids, thereby accelerating their maturation. This combination holds great potential for advancing cartilage repair strategies, providing a robust platform for preclinical studies, and paving the way for innovative therapeutic approaches for cartilage-related injuries and degenerative diseases. These key aspects-chondrogenesis, matrix synthesis, and cellular proliferation-were specifically selected due to their fundamental roles in cartilage tissue engineering and regeneration. Chondrogenesis is crucial for chondrocyte differentiation and maintenance, matrix synthesis ensures the structural integrity and functional properties of regenerated cartilage, and cellular proliferation supports tissue viability and repair. Addressing these factors is essential, as current cartilage regeneration strategies often suffer from limited long-term efficacy and inadequate extracellular matrix production. By elucidating the synergistic effects of PRP and cartilage organoids in these areas, this study seeks to bridge existing knowledge gaps and provide valuable insights for improving regenerative approaches in clinical applications, particularly for osteoarthritis and cartilage defects.
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Rajabi
- Postgraduate Student or Periodontist, Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
2
|
Şeker Ş, Elçin AE, Elçin YM. Current trends in the design and fabrication of PRP-based scaffolds for tissue engineering and regenerative medicine. Biomed Mater 2025; 20:022001. [PMID: 39787704 DOI: 10.1088/1748-605x/ada83f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Blood-derived biomaterials with high platelet content have recently emerged as attractive products for tissue engineering and regenerative medicine (TERM). Platelet-derived bioactive molecules have been shown to play a role in wound healing and tissue regeneration processes by promoting collagen synthesis, angiogenesis, cell proliferation, migration, and differentiation. Given their regenerative potential, platelet-rich blood derivatives have become a promising treatment option for use in a variety of conditions. Platelet-Rich Plasma (PRP), one of the platelet-rich blood derivatives, is a platelet concentrate suspended in a small volume of blood plasma obtained from whole blood. Due to its potential clinical benefits, PRP is widely used alone or in combination with various biomaterials/scaffolds in different fields of medicine and has shown promising results in wound healing. The recent growing interest in the development of PRP-based scaffolds also reveals new perspectives on the use of PRP or platelet lysate in TERM. This topical review contains a comprehensive summary of recent trends in the fabrication of PRP-based scaffolds that can deliver growth factors, serve as mechanical support for cells, and have therapeutic or regenerative properties. The article briefly focuses on diverse PRP-based constructs using PRP as a scaffolding material, their current fabrication approaches as well as the challenges encountered and provides a selection of existing strategies and new insights.
Collapse
Affiliation(s)
- Şükran Şeker
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara 06100, Turkiye
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara 06100, Turkiye
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara 06100, Turkiye
| |
Collapse
|
3
|
Samiraninezhad N, Rezazadeh H, Rezazadeh H, Mardaninezhad R, Tabesh A, Rezazadeh F. Platelet-rich fibrin in the management of oral mucosal lesions: a scoping review. BMC Oral Health 2024; 24:1189. [PMID: 39369241 PMCID: PMC11456237 DOI: 10.1186/s12903-024-04981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
OBJECTIVES Oral mucosal lesions are prevalent and often cause pain, thus impacting patients' quality of life. Platelet-rich fibrin (PRF) has emerged as a promising autologous biomaterial for wound healing, yet comprehensive evidence regarding its efficacy in treating oral mucosal lesions is limited. This study aims to update the current evidence on the effectiveness of PRF in treating various types of oral mucosal lesions. MATERIALS AND METHODS We conducted a literature search in PubMed, Scopus, Embase, and Web of Science databases until April 2024. The search included studies that investigated the use of PRF in treating oral mucosal lesions. Twelve studies met the inclusion criteria, comprising three case reports, three randomized controlled trials, two animal studies, three split-mouth trials, and one retrospective study. We performed data extraction according to a predefined form. RESULTS PRF was applied in two forms-membranes and injectable gels-to treat a range of oral mucosal lesions, including ulcerative, red and white, pigmented, and potentially malignant or malignant lesions. Compared to control groups or conventional treatments, PRF generally demonstrated superior outcomes regarding faster healing, lesion size reduction, symptom relief, and lower recurrence rates. Histological and molecular analyses from some studies also indicated PRF's regenerative and anti-inflammatory effects. CONCLUSION PRF shows promise as an effective and safe alternative to current treatments for oral mucosal lesions due to its autologous nature, ease of preparation, and wound-healing capabilities. However, further research is needed to standardize PRF preparation protocols and confirm its long-term efficacy across different lesion types.
Collapse
Affiliation(s)
- Nazafarin Samiraninezhad
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Rezazadeh
- Oral and Dental Diseases Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hasan Rezazadeh
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amir Tabesh
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahimeh Rezazadeh
- Department of Oral and Maxillofacial Medicine, Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Li S, Dan X, Chen H, Li T, Liu B, Ju Y, Li Y, Lei L, Fan X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater 2024; 40:597-623. [PMID: 39239261 PMCID: PMC11375146 DOI: 10.1016/j.bioactmat.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Tissue engineering technology has advanced rapidly in recent years, offering opportunities to construct biologically active tissues or organ substitutes to repair or even enhance the functions of diseased tissues and organs. Tissue-engineered scaffolds rebuild the extracellular microenvironment by mimicking the extracellular matrix. Fibrin-based scaffolds possess numerous advantages, including hemostasis, high biocompatibility, and good degradability. Fibrin scaffolds provide an initial matrix that facilitates cell migration, differentiation, proliferation, and adhesion, and also play a critical role in cell-matrix interactions. Fibrin scaffolds are now widely recognized as a key component in tissue engineering, where they can facilitate tissue and organ defect repair. This review introduces the properties of fibrin, including its composition, structure, and biology. In addition, the modification and cross-linking modes of fibrin are discussed, along with various forms commonly used in tissue engineering. We also describe the biofunctionalization of fibrin. This review provides a detailed overview of the use and applications of fibrin in skin, bone, and nervous tissues, and provides novel insights into future research directions for clinical treatment.
Collapse
Affiliation(s)
- Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tong Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Wang X, Yang X, Xiao X, Li X, Chen C, Sun D. Biomimetic design of platelet-rich plasma controlled release bacterial cellulose/hydroxyapatite composite hydrogel for bone tissue engineering. Int J Biol Macromol 2024; 269:132124. [PMID: 38723802 DOI: 10.1016/j.ijbiomac.2024.132124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.
Collapse
Affiliation(s)
- Xiangmei Wang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xiaoli Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xin Xiao
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xueqian Li
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| |
Collapse
|
6
|
Guo G, Ouyang W, Wang G, Zhao W, Zhao C. Clinical evaluation of platelet-rich plasma therapy for osteonecrosis of the femoral head: A systematic review and meta-analysis. PLoS One 2024; 19:e0304096. [PMID: 38787864 PMCID: PMC11125492 DOI: 10.1371/journal.pone.0304096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE This meta-analysis aims to assess the efficacy and safety of platelet-rich plasma (PRP) for osteonecrosis of the femoral head (ONFH). METHODS We comprehensively searched randomized controlled trials in PubMed, Web of Science, EMBASE, the Cochrane Central Register of Controlled Trials, Chinese National Knowledge Infrastructure, China Science and Technology Journal Database, WanFang, and Chinese BioMedical Literature Database from inception until October 25, 2024. The literature on the clinical efficacy of autologous PRP for ONFH was collated. According to the inclusion and exclusion criteria, the literature was screened, quality evaluated and the data was extracted. Meta-analysis was carried out with the software Review Manager 5.4.1 software and Stata 17.0 software. In addition, potential publication bias was detected by the funnel plot test and Egger's test. The GRADE system was used to evaluate the quality of evidence for outcome indicators. RESULTS Fourteen studies involving 909 patients were included in this study. Compared with non-PRP, PRP exhibited significant improvements in the Harris hip score (HHS) at 3 months (MD = 3.58, 95% Cl: 1.59 to 5.58, P = 0.0004), 6 months (MD = 6.19, 95% Cl: 3.96 to 8.41, P < 0.00001), 12 months (MD = 4.73, 95% Cl: 3.24 to 6.22, P < 0.00001), ≥ 24 months (MD = 6.83, 95% Cl: 2.09 to 11.59, P = 0.0003), and the last follow-up (MD = 6.57, 95% Cl: 4.81 to 8.33, P < 0.00001). The PRP also showed improvement in HHS compared to baseline than the non-PRP at 3 months (MD = 3.60, 95% Cl: 1.26 to 5.94, P = 0.003), 6 months (MD = 6.17, 95% Cl: 3.74 to 8.61, P < 0.00001), 12 months (MD = 5.35, 95% Cl: 3.44 to 7.25, P < 0.00001), ≥ 24 months (MD = 8.19, 95% Cl: 3.76 to 12.62, P = 0.0003), and the last follow-up (MD = 6.94, 95% Cl: 5.09 to 8.78, P < 0.00001). The change in visual analog scale (VAS) score 3 months post intervention (MD = -0.33, 95% Cl: -0.52 to -0.13, P = 0.001), 6 months (MD = -0.69, 95% Cl: -0.90 to -0.48, P < 0.00001), 12 months (MD = -0.75, 95% Cl: -1.05 to -0.46, P < 0.00001), ≥ 24 months (MD = -1.05, 95% Cl: -1.20 to -0.89, P < 0.00001), and the last follow-up (MD = -0.75, 95% Cl: -0.97 to -0.54, P < 0.00001). The PRP also showed a decrease in VAS score compared to baseline than the non-PRP at 3 months (MD = -0.29, 95% Cl: -0.41 to -0.17, P = 0.003), 6 months (MD = -0.63, 95% Cl: -0.96 to -0.30, P = 0.0002), 12 months (MD = -0.78, 95% Cl: -1.22 to -0.33, P = 0.0006), ≥ 24 months (MD = -1.11, 95% Cl: -1.27 to -0.96, P < 0.00001), and the last follow-up (MD = -0.74, 95% Cl: -1.05 to -0.43, P < 0.00001). Additionally, it was found that the PRP group had the advantages in the following aspects: collapse rate of the femoral head (RR = 0.33, 95% Cl: 0.17 to 0.62, P = 0.0006), rate of conversion to total hip arthroplasty (RR = 0.37, 95% Cl: 0.18 to 0.74, P = 0.005), and overall complications (RR = 0.33, 95% Cl: 0.13 to 0.83, P = 0.02). The GRADE evidence evaluation showed overall complication as very low quality and other indicators as low quality. CONCLUSION There is limited evidence showing benefit of PRP therapy for treatment of ONFH patients, and most of this evidence is of low quality. Caution should therefore be exercised in interpreting these results. It is recommended that future research involve a greater number of high-quality studies to validate the aforementioned conclusions. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/ #recordDetails, CRD42023463031.
Collapse
Affiliation(s)
- Guimei Guo
- Changchun University of Chinese Medicine, Changchun, China
- Hospital Affiliated to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Wensi Ouyang
- Changchun University of Chinese Medicine, Changchun, China
- Hospital Affiliated to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Guochen Wang
- Changchun University of Chinese Medicine, Changchun, China
- Hospital Affiliated to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Wenhai Zhao
- Changchun University of Chinese Medicine, Changchun, China
- Hospital Affiliated to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Changwei Zhao
- Changchun University of Chinese Medicine, Changchun, China
- Hospital Affiliated to Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Apaza Alccayhuaman KA, Heimel P, Tangl S, Lettner S, Kampleitner C, Panahipour L, Kuchler U, Gruber R. Human versus Rat PRF on Collagen Membranes: A Pilot Study of Mineralization in Rat Calvaria Defect Model. Bioengineering (Basel) 2024; 11:414. [PMID: 38790282 PMCID: PMC11117948 DOI: 10.3390/bioengineering11050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Platelet-rich fibrin, the coagulated plasma fraction of blood, is commonly used to support natural healing in clinical applications. The rat calvaria defect is a standardized model to study bone regeneration. It remains, however, unclear if the rat calvaria defect is appropriate to investigate the impact of human PRF (Platelet-Rich Fibrin) on bone regeneration. To this end, we soaked Bio-Gide® collagen membranes in human or rat liquid concentrated PRF before placing them onto 5 mm calvarial defects in Sprague Dawley rats. Three weeks later, histology and micro-computed tomography (μCT) were performed. We observed that the collagen membranes soaked with rat PRF show the characteristic features of new bone and areas of mineralized collagen matrix, indicated by a median mineralized volume of 1.5 mm3 (range: 0.9; 5.3 mm3). Histology revealed new bone growing underneath the membrane and hybrid bone where collagen fibers are embedded in the new bone. Moreover, areas of passive mineralization were observed. The collagen membranes soaked with human PRF, however, were devoid of histological features of new bone formation in the center of the defect; only occasionally, new bone formed at the defect margins. Human PRF (h-PRF) caused a median bone volume of 0.9 mm3 (range: 0.3-3.3 mm3), which was significantly lower than what was observed with rat PRF (r-PRF), with a BV median of 1.2 mm3 (range: 0.3-5.9 mm3). Our findings indicate that the rat calvaria defect model is suitable for assessing the effects of rat PRF on bone formation, but caution is warranted when extrapolating conclusions regarding the efficacy of human PRF.
Collapse
Affiliation(s)
- Karol Ali Apaza Alccayhuaman
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (K.A.A.A.); (L.P.)
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (S.T.); (S.L.); (C.K.)
| | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (S.T.); (S.L.); (C.K.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (S.T.); (S.L.); (C.K.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Stefan Lettner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (S.T.); (S.L.); (C.K.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (S.T.); (S.L.); (C.K.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (K.A.A.A.); (L.P.)
| | - Ulrike Kuchler
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (K.A.A.A.); (L.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
8
|
Li G, Liu S, Tan G, Wang S, Xie J. Clinical observation of ultraviolet therapy combined with autologous platelet-rich plasma in the treatment of chronic refractory wounds. Int Wound J 2024; 21:e14746. [PMID: 38654547 PMCID: PMC11040179 DOI: 10.1111/iwj.14746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 04/26/2024] Open
Abstract
Refractory wounds present complex and serious clinical dilemmas in plastic and reconstructive surgeries. Currently, there are no standard guidelines for the treatment of refractory wounds. To observe the clinical effects of ultraviolet (UV) therapy combined with autologous platelet-rich plasma (PRP) on chronic refractory wounds. Between January 2021 and December 2022, 60 inpatients with chronic refractory wounds were enrolled. Twenty patients were assigned to each of control groups 1 and 2 and treatment group according to whether they received PRP or UV treatment. All the patients underwent thorough debridement. Control group 2 received UV radiation. The treatment group underwent UV radiation combined with PRP gel covering the wound. Control group 1 underwent routine dressing changes after surgery, followed by skin grafting or skin key transfer if needed. One month later, we observed the wound healing in the two groups. After 2-4 PRP gel treatments, the wounds of patients in the treatment group healed. The healing time was 25.25 ± 4.93 days, and the dressings were changed 4.15 ± 3.30 times, both of which were better outcomes than in both control groups. In the treatment group, epidermal growth factor (EGF), insulin-like growth factor (IGF), platelet-derived growth factor (PGF), and transforming growth factor β (TGF-β) were slightly higher, and the concentration of vascular endothelial growth factor (VEGF) was significantly higher than in the control group (p < 0.05). PRP combined with UV therapy significantly increased the concentration of wound growth factors, accelerated wound healing, shortened treatment time, reduced treatment costs, and alleviated pain in patients.
Collapse
Affiliation(s)
- Gaoquan Li
- Department of Rehabilitation NursingXiangNan UniversityChenzhouChina
| | - Songtao Liu
- Department of Rehabilitation NursingThe Affiliated Hospital of Xiangnan UniversityChenzhouChina
| | - Guange Tan
- Department of Rehabilitation NursingThe Affiliated Hospital of Xiangnan UniversityChenzhouChina
| | - Shanxi Wang
- Department of Rehabilitation NursingXiangNan UniversityChenzhouChina
| | - Juying Xie
- Department of Rehabilitation NursingXiangNan UniversityChenzhouChina
| |
Collapse
|
9
|
Baru O, Buduru SD, Berindan-Neagoe I, Leucuta DC, Roman AR, Tălmăceanu D, Silvasan H, Badea ME. Autologous leucocyte and platelet rich in fibrin (L-PRF) - is it a competitive solution for bone augmentation in maxillary sinus lift? A 6-month radiological comparison between xenografts and L-PRF. Med Pharm Rep 2024; 97:222-233. [PMID: 38746034 PMCID: PMC11090277 DOI: 10.15386/mpr-2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/24/2024] [Indexed: 05/16/2024] Open
Abstract
Maxillary lateral sinus floor elevation, or external sinus lift, is a widespread surgical intervention in the dental field. Insertion of implants in the posterior region of the maxilla often requires reconstruction of the remaining native bone that has insufficient volume. Background and aims Much of the research published involves using artificial products, like xenografts and resorbable collagen membranes, after a prior Cone Beam Computer Tomography (CBCT) investigation. Nowadays, more accessible access, less financial costs, a biological approach, and faster healing are objectives that surround this procedure. Leucocytes and platelets rich in Fibrin (L-PRF) are a natural component with a high concentration of growth factors. Due to its regenerative properties and lack of complications, it is used in several medical fields, like orthopedics, dermatology, and oral surgery. This retrospective study aims to compare results in bone height and volume obtained through external sinus lift, either by using xenografts or autologous plasma rich in fibrin, by evaluating the quantity of new bone formation from a radiological point of view. Methods Fifty-eight Caucasian patients were included in this retrospective study; 48 were submitted to xenograft procedure, and 10 were selected for L-PRF grafting material with simultaneous implant placement. Lack of clinical and histological studies performed on patients with L-PRF surgeries limited us in choosing a larger group for the radiological analysis. CBCT evaluation was performed before surgery and 6 months after. All patients selected for the study presented good general and oral health, acute oral and sinus infections excluded; smoking and periodontal disease were also criteria of exclusion. Two operators performed the measurements in pre-established landmarks in different time frames. The two independent groups were compared with the Wilcoxon rank-sum test for quantitative data. Qualitative characteristics were described as counts and percentages. All analyses were performed in an R environment for statistical computing and graphics. Results Mean bone height gain in the xenograft group in the regions was as follows: 7.44 for the anterior landmark, 12.14 for the median and 8.28 for the distal. The mean group height gained for the L-PRF group was 0.1 anteriorly, -0.18 for the median measurement, and 0.23 distally. We obtained excellent overall reliability for all the height measurements between the two operators. Conclusions Further studies must be conducted to establish new sets of surgical protocols in case L-PRF alone is found to be a reliable, stable, biological alternative to the well-documented xenografts in external sinus lifts. Radiological results, although promising, must be further applied in long term clinical survival of the implants in the grafted sites. Also, studies combining L-PRF in conjunction with xenograft might bring improved clinical results in terms of reduced postoperative complications and accelerated healing.
Collapse
Affiliation(s)
- Oana Baru
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Smaranda Dana Buduru
- Department Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Raluca Roman
- Department of Maxillofacial Surgery and Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | - Mîndra Eugenia Badea
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Kumar N, Francis M, Sindhu Vk S, Ramachandra V, Anilkumar PV, Fahad Khan M. Efficacy of Injectable Platelet-Rich Fibrin (I-PRF) in Managing Temporomandibular Joint Pain: A Prospective Clinical Study. Cureus 2024; 16:e54367. [PMID: 38500930 PMCID: PMC10945458 DOI: 10.7759/cureus.54367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/17/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Temporomandibular joint (TMJ) pain is a common condition that can significantly impact an individual's quality of life. Current treatment options often fall short of providing long-lasting relief. So, this prospective clinical study aimed to investigate the efficacy of injectable platelet-rich fibrin (I-PRF) in mitigating TMJ pain. METHODS A total of 68 participants, aged 18-60 years, clinically diagnosed with TMJ pain, were recruited from dental clinics and specialist referrals. Participants were randomly assigned to either the intervention group (I-PRF injections) or the control group (placebo). Primary outcome measures included TMJ pain intensity and jaw function, assessed using the Visual Analog Scale and functional examinations, respectively. Secondary outcomes comprised patient-reported outcomes (PROs) on quality of life and satisfaction. Data were collected at baseline and six, 12, and 24 weeks post intervention. RESULTS Baseline characteristics demonstrated successful randomization, with no significant differences in age, gender, or TMJ pain duration between groups. Post intervention, the intervention group exhibited a significant and sustained reduction in TMJ pain intensity compared to controls (p<0.001). Improvements in jaw function were also notable in the intervention group at all follow-up time points (p<0.001). PROs related to quality of life and satisfaction substantially increased in the intervention group compared to controls (p<0.001). CONCLUSION I-PRF demonstrated significant efficacy in reducing TMJ pain intensity, improving jaw function, and enhancing PROs. These findings support the consideration of I-PRF as a valuable therapeutic intervention for individuals with TMJ pain.
Collapse
Affiliation(s)
- Nithin Kumar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Central Asian University, Tashkent, UZB
| | - Mariea Francis
- Department of Oral and Maxillofacial Surgery, Sankalchand Patel University, Visnagar, IND
| | - Sai Sindhu Vk
- Department of Oral and Maxillofacial Surgery, RVS Dental College and Hospital, Coimbatore, IND
| | - Varun Ramachandra
- Department of Oral and Maxillofacial Surgery, Manubhai Patel Dental College, Vadodara, IND
| | - P Vijay Anilkumar
- Department of Oral and Maxillofacial Surgery, GITAM Dental College and Hospital, Visakhapatnam, IND
| | - Mohammad Fahad Khan
- Department of Oral and Maxillofacial Surgery, Chandra Dental College and Hospital, Barabanki, IND
| |
Collapse
|
11
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
12
|
Song P, He D, Ren S, Fan L, Sun J. Platelet-rich fibrin in dentistry. J Appl Biomater Funct Mater 2024; 22:22808000241299588. [PMID: 39588592 DOI: 10.1177/22808000241299588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVES To review the progress of Platelet Rich Fibrin (PRF) as a biomaterial in dentistry and to highlight its promising application as a safe and biocompatible autologous platelet concentrate. Publications were searched in GeenMedical, X-mol, GoogleScholar, and PubMed from October 2024 with no language restrictions. The literature was searched for relevant databases and journals on the use of PRFs in dentistry up to October 2024, and the inclusion criteria included randomized controlled trials, clinical trials, case series, and systematic reviews. CONCLUSION PRF is a second-generation platelet concentrate that is sourced from oneself, has fewer adverse effects, and is simple and safe to prepare. These materials include growth factors and fibrin scaffolds, which are extensively utilized in regenerative medicine. By outlining PRF, we found that good results can be achieved when PRF is used to treat these conditions. CLINICAL SIGNIFICANCE The application of PRF in dentistry is widespread, particularly in periodontal soft and hard tissue regeneration, oral lichen planus, and pulpal regeneration. This article reviews the background, classification, and preparation methods of PRFs, along with their dental applications. We anticipate further research on various PRF derivatives in the future, which will significantly improve the utilization of PRF in oral applications and offer fresh insights for diagnosing and treating oral diseases.
Collapse
Affiliation(s)
- Ping Song
- Graduate School of Dalian Medical University, Dalian, China
| | - Dawei He
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Song Ren
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Fan
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Jiang Sun
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| |
Collapse
|
13
|
Li XH, Xiao HX, Wang ZX, Tang XR, Yu XF, Pan YP. Platelet Concentrates Preconditioning of Mesenchymal Stem Cells and Combined Therapies: Integrating Regenerative Strategies for Enhanced Clinical Applications. Cell Transplant 2024; 33:9636897241235460. [PMID: 38506426 PMCID: PMC10956156 DOI: 10.1177/09636897241235460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 03/21/2024] Open
Abstract
This article presents a comprehensive review of the factors influencing the efficacy of mesenchymal stem cells (MSCs) transplantation and its association with platelet concentrates (PCs). It focuses on investigating the impact of PCs' composition, the age and health status of platelet donors, application methods, and environmental factors on the outcomes of relevant treatments. In addition, it delves into the strategies and mechanisms for optimizing MSCs transplantation with PCs, encompassing preconditioning and combined therapies. Furthermore, it provides an in-depth exploration of the signaling pathways and proteomic characteristics associated with preconditioning and emphasizes the efficacy and specific effects of combined therapy. The article also introduces the latest advancements in the application of biomaterials for optimizing regenerative medical strategies, stimulating scholarly discourse on this subject. Through this comprehensive review, the primary goal is to facilitate a more profound comprehension of the factors influencing treatment outcomes, as well as the strategies and mechanisms for optimizing MSCs transplantation and the application of biomaterials in regenerative medicine, offering theoretical guidance and practical references for related research and clinical practice.
Collapse
Affiliation(s)
- Xu-huan Li
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Han-xi Xiao
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zu-xiu Wang
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin-rong Tang
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xue-feng Yu
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong-ping Pan
- The 4th Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Lambrichts I, Wolfs E, Bronckaers A, Gervois P, Vangansewinkel T. The Effect of Leukocyte- and Platelet-Rich Fibrin on Central and Peripheral Nervous System Neurons-Implications for Biomaterial Applicability. Int J Mol Sci 2023; 24:14314. [PMID: 37762617 PMCID: PMC10532231 DOI: 10.3390/ijms241814314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.
Collapse
Affiliation(s)
- Ivo Lambrichts
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Esther Wolfs
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Annelies Bronckaers
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Pascal Gervois
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|