1
|
Krzyżek P, Migdał P, Tusiewicz K, Zawadzki M, Szpot P. Subinhibitory concentrations of antibiotics affect development and parameters of Helicobacter pylori biofilm. Front Pharmacol 2024; 15:1477317. [PMID: 39469629 PMCID: PMC11513322 DOI: 10.3389/fphar.2024.1477317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Helicobacter pylori causes chronic gastric diseases in nearly 50% of people around the world. It is suggested that biofilm formation has a pronounced effect on the dynamic resistance spread and recurrence of these infections. Methods To mimic the scenario of therapeutic ineffectiveness, we investigated the impact of sub-minimal inhibitory concentrations (sub-MICs) of antibiotics on the development and parameters of biofilms produced by clinical H. pylori strains. Results We observed that constant exposure of planktonic forms to metronidazole or levofloxacin stimulated the speed of autoaggregation and the amount of extracellular matrix, resulting in increased dimensions of the developed biofilms. Contrary to this, continuous exposure to clarithromycin negatively affected a number of biofilm-related reactions and led to the biofilm-weakening effect. Through assessing the membrane fatty acid profiles of antibiotic-exposed cells, we confirmed that metronidazole and levofloxacin induced a biofilm-like phenotype, while clarithromycin kept bacteria in a planktonic form. Discussion Our results suggest that sub-MICs of antibiotics affect the biochemical and biophysical properties of the developing biofilm of H. pylori strains and may impact the effectiveness of antibiotic treatment.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Kaja Tusiewicz
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Zawadzki
- Department of Social Sciences and Infectious Diseases, Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Shan T, Li Y, Ren B, Xian W, Chen D, Guo X, Li B, Cheng L. Dodecylmethylaminoethyl methacrylate inhibits Enterococcus faecalis in a pH-dependent manner. Dent Mater 2024; 40:1658-1668. [PMID: 39089903 DOI: 10.1016/j.dental.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Considering the correlation between survival microenvironment of E. faecalis and acidic pH value, this study aimed to investigate the potential of utilizing pH-responsive DMAEM monomers and their copolymers with resin-based root canal sealers to inhibit E. faecalis. METHODS Broth microdilution assay, crystal violet staining and qPCR were performed to evaluate antibacterial effects of DMAEM monomers against E. faecalis at different pH. Methacrylate-resin based root canal sealers were prepared and copolymerized with DMAEM. The flow, solubility, water sorption, apical sealing ability and cytotoxicity of sealers were investigated to optimize formulation. The anti-E. faecalis effects of DMAEM copolymers with sealers were evaluated by direct contact test, colony-forming unit counting and live/dead staining. RESULTS DMAEM monomers inhibited the growth, biofilm formation and virulence factors expression of E. faecalis in a concentration- and pH-dependent manner. Incorporation of 1.25 % and 2.5 % DMAEM into experimental sealers would not affect the flowability, solubility and periapical sealing ability (P > 0.05), but increased the water sorption of sealers (P < 0.01). Cells viability was higher than 90 % in both 1.25 % and 2.5 % DMAEM groups at pH 7.0. DMAEM copolymers with sealers reduced E. faecalis counts, inhibited biofilm formation and decreased live cells within the biofilm in response to pH values. SIGNIFICANCE DMAEM monomers and their copolymers with resin-based sealers possessed antibacterial and antibiofilm effects on E. faecalis in response to pH values. DMAEM is promising to inhibit intraradicular E. faecalis in response to its acidic survival environment and maintain low cytotoxicity under neutral conditions, ensuring their biosafety in case of inadvertent entry into periapical tissues.
Collapse
Affiliation(s)
- Tiantian Shan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiling Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenpan Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Huang TT, Cao YX, Cao L. Novel therapeutic regimens against Helicobacter pylori: an updated systematic review. Front Microbiol 2024; 15:1418129. [PMID: 38912349 PMCID: PMC11190606 DOI: 10.3389/fmicb.2024.1418129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a strict microaerophilic bacterial species that exists in the stomach, and H. pylori infection is one of the most common chronic bacterial infections affecting humans. Eradicating H. pylori is the preferred method for the long-term prevention of complications such as chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. However, first-line treatment with triple therapy and quadruple therapy has been unable to cope with increasing antibacterial resistance. To provide an updated review of H. pylori infections and antibacterial resistance, as well as related treatment options, we searched PubMed for articles published until March 2024. The key search terms were "H. pylori", "H. pylori infection", "H. pylori diseases", "H. pylori eradication", and "H. pylori antibacterial resistance." Despite the use of antimicrobial agents, the annual decline in the eradication rate of H. pylori continues. Emerging eradication therapies, such as the development of the new strong acid blocker vonoprazan, probiotic adjuvant therapy, and H. pylori vaccine therapy, are exciting. However, the effectiveness of these treatments needs to be further evaluated. It is worth mentioning that the idea of altering the oxygen environment in gastric juice for H. pylori to not be able to survive is a hot topic that should be considered in new eradication plans. Various strategies for eradicating H. pylori, including antibacterials, vaccines, probiotics, and biomaterials, are continuously evolving. A novel approach involving the alteration of the oxygen concentration within the growth environment of H. pylori has emerged as a promising eradication strategy.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Huang TT, Liu YN, Huang JX, Yan PP, Wang JJ, Cao YX, Cao L. Sodium sulfite-driven Helicobacter pylori eradication: Unraveling oxygen dynamics through multi-omics investigation. Biochem Pharmacol 2024; 222:116055. [PMID: 38354959 DOI: 10.1016/j.bcp.2024.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Due to the emergence and spread of multidrug resistance in Helicobacter pylori (H. pylori), its eradication has become difficult. Sodium sulfite (SS), a widely used food additive for ensuring food safety and storage, has been recognized as an effective nonbactericidal agent for H. pylori eradication. However, the mechanism by which H. pylori adapts and eventually succumbs under low- or no-oxygen conditions remains unknown. In this study, we aimed to evaluate the anti-H. pylori effect of SS and investigated the multiomics mechanism by which SS kills H. pylori. The results demonstrated that SS effectively eradicated H. pylori both in vitro and in vivo. H. pylori responds to the oxygen changes regulated by SS, downregulates the HcpE gene, which is responsible for redox homeostasis in bacteria, decreases the activities of enzymes related to oxidative stress, and disrupts the outer membrane structure, increasing susceptibility to oxidative stress. Furthermore, SS downregulates the content of cytochrome C in the microaerobic respiratory chain, leading to a sharp decrease in ATP synthesis. Consequently, the accumulation of triglycerides (TGs) in bacteria due to oxidative stress supports anaerobic respiration, meeting their energy requirements. The multifaceted death of H. pylori caused by SS does not result in drug resistance. Thus, screening of the redox homeostasis of HcpE as a new target for H. pylori infection treatment could lead to the development of a novel approach for H. pylori eradication therapy.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yan-Ni Liu
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jin-Xian Huang
- Software Department, East China University of Technology, Nanchang 330032, Jiangxi, China
| | - Ping-Ping Yan
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Ji-Jing Wang
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| |
Collapse
|