1
|
Yang X, Yan S, Li Y, Li G, Zhao Y, Sun S, Su J, Cui Z, Huo J, Sun Y, Yi H, Li Z, Wang S. Defense-Related Enzyme Activities and Metabolomic Analysis Reveal Differentially Accumulated Metabolites and Response Pathways for Sheath Blight Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3554. [PMID: 39771252 PMCID: PMC11677778 DOI: 10.3390/plants13243554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Rice sheath blight (RSB), caused by the pathogenic fungus Rhizoctonia solani, poses a significant threat to global food security. The defense mechanisms employed by rice against RSB are not well understood. In our study, we analyzed the interactions between rice and R. solani by comparing the phenotypic changes, ROS content, and metabolite variations in both tolerant and susceptible rice varieties during the early stages of fungal infection. Notably, there were distinct phenotypic differences in the response to R. solani between the tolerant cultivar Zhengdao22 (ZD) and the susceptible cultivar Xinzhi No.1 (XZ). We observed that the activities of five defense-related enzymes in both tolerant and susceptible cultivars changed dynamically from 0 to 72 h post-infection with R. solani. In particular, the activities of superoxide dismutase and peroxidase were closely associated with resistance to RSB. Metabolomic analysis revealed 825 differentially accumulated metabolites (DAMs) between the tolerant and susceptible varieties, with 493 DAMs responding to R. solani infection. Among these, lipids and lipid-like molecules, organic oxygen compounds, phenylpropanoids and polyketides, organoheterocyclic compounds, and organic acids and their derivatives were the most significantly enriched. One DAM, P-coumaraldehyde, which responded to R. solani infection, was found to effectively inhibit the growth of R. solani, Magnaporthe grisea, and Ustilaginoidea virens. Additionally, multiple metabolic pathways, including amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, and metabolism of terpenoids and polyketides, are likely involved in RSB resistance. Our research provides valuable insights into the molecular mechanisms underlying the interaction between rice and R. solani.
Collapse
Affiliation(s)
- Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Guangsheng Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yujiao Zhao
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China
| | - Shuqin Sun
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jingping Su
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhongqiu Cui
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jianfei Huo
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yue Sun
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Heng Yi
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhibin Li
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China
| | - Shengjun Wang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
2
|
Cao B, Wang J, Ma J, Hai Y, Wang X, Fu Z, Xiang Z, Wang Y, Zhang L, Wang J, Li S. Large-Scale Screening and Function Analysis of Rhizoctonia solani Effectors Targeting Rice Chloroplasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24336-24346. [PMID: 39466335 DOI: 10.1021/acs.jafc.4c07329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Rice sheath blight (RSB), caused byRhizoctonia solani, is a major economic threat to global rice crops. The genome of R. solani contains over 103 potential effectors, with most functions still unknown. Previous studies show that chloroplast plays a crucial role in RSB resistance. However, whether R. solani effectors target plant chloroplasts to promote the pathogen infection remains unclear. This study leveraged four RSB-resistant chloroplast proteins to identify five interacting secreted proteins from a 430-protein R. solani yeast library. These proteins, which localize to rice chloroplasts, were shown to cause cell death in Nicotiana benthamiana and rice protoplasts, suggesting that they potentially influence host cellular processes by targeting chloroplasts. Bioinformatic analysis indicates that these five putative effectors almost all contained conserved structures related to pathogenicity. This study provides a novel method for screening specific functional effectors and facilitates the further study of the pathogenic mechanisms of R. solani.
Collapse
Affiliation(s)
- Bing Cao
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
| | - Jun Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Junyi Ma
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
| | - Yingfan Hai
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Xinyu Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
| | - Zhuangyuan Fu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Zongjing Xiang
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Yingling Wang
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Lixuan Zhang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China
| | - Jiyang Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China
| | - Shuai Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
| |
Collapse
|
3
|
Liu S, Liu J, Wang W, Yan Y, Wang T, Wu J, Liu X, Wu J, Zeng Y. Comparative Field Evaluation and Transcriptome Analysis Reveals that Chromosome Doubling Enhances Sheath Blight Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:42. [PMID: 38958835 PMCID: PMC11222352 DOI: 10.1186/s12284-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Rice sheath blight, caused by Rhizoctonia solani Kihn (R. solani), poses a significant threat to rice production and quality. Autotetraploid rice, developed through chromosome doubling of diploid rice, holds great potential for enhancing biological and yield traits. However, its resistance to sheath blight in the field has remained unclear. In this study, the field resistance of 35 autotetraploid genotypes and corresponding diploids was evaluated across three environments from 2020 to 2021. The booting stage was optimal for inoculating period based on the inoculation and analysis of R. solani at five rice growth stages. We found autotetraploids generally exhibited lower disease scores than diploids, indicating enhanced resistance after chromosome doubling. Among the 35 genotypes, 16 (45.71%) displayed increased resistance, 2 (5.71%) showed decreased resistance, and 17 (48.57%) displayed unstable resistance in different sowing dates. All combinations of the genotype, environment and ploidy, including the genotype-environment-ploidy interaction, contributed significantly to field resistance. Chromosome doubling increased sheath blight resistance in most genotypes, but was also dependent on the genotype-environment interaction. To elucidate the enhanced resistance mechanism, RNA-seq revealed autotetraploid recruited more down-regulated differentially expressed genes (DEGs), additionally, more resistance-related DEGs, were down-regulated at 24 h post inoculation in autotetraploid versus diploid. The ubiquinone/terpenoid quinone and diterpenoid biosynthesis pathways may play key roles in ploidy-specific resistance mechanisms. In summary, our findings shed light on the understanding of sheath blight resistance mechanisms in autotetraploid rice.
Collapse
Affiliation(s)
- Sanglin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yugang Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Tianya Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuxiang Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Li X, Li Y, Liu H, Liu D, Xu C, Yan M, Zhang C, Zhang C, Xia Z, An M, Wu Y. Identification of host gene regulation and resistance pathway dynamics at diverse infection stages of Rhizoctonia solani AG3-TB. PHYSIOLOGIA PLANTARUM 2024; 176:e14475. [PMID: 39140303 DOI: 10.1111/ppl.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Rhizoctonia solani is a fungal pathogen that causes significant losses in agricultural production. Because of its rapid transmission and broad host range, the exploration of genes involved in defense responses to the infection of R. solani has become an important task. Here, we performed a time-course RNA-Seq experiment to explore crucial genes or pathways involved in host responses to R. solani AG3-TB infection at 6, 12, 24, 36, 48, and 72 hours post inoculation (hpi). GO and KEGG enrichment analysis revealed that most DEGs were enriched in the basal metabolism pathways, including carbohydrate metabolic processes and the biosynthesis of amino acids. Moreover, catalase (CAT) and superoxide dismutase (SOD) were up-regulated, and transcription factors (TFs) such as WRKY, AP2, and MYB were increased significantly compared to the control (0 hpi). Silencing of WRKY70 and catalase-3 exhibited elevated susceptibility to the fungal infection. To summarize, the TFs WRKY70 and WRKY75, genes involved in jasmonic acid (JA), salicylic acid (SA), and brassinosteroids (BR) signaling pathways, and defense-related enzymes may play crucial roles in the host responses to R. solani AG3-TB infection.
Collapse
Affiliation(s)
- Xinchun Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Rice Research Institute, College of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Yan Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - He Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dongyang Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Min Yan
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chongjin Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chong Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Prathi NB, Durga Rani CV, Prakasam V, Mohan YC, Mahendranath G, Sri Vidya GK, Neeraja CN, Sundaram RM, Mangrauthia SK. Oschib1 gene encoding a GH18 chitinase confers resistance against sheath blight disease of rice caused by Rhizoctonia solani AG1-IA. PLANT MOLECULAR BIOLOGY 2024; 114:41. [PMID: 38625509 DOI: 10.1007/s11103-024-01442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.
Collapse
Affiliation(s)
- Naresh Babu Prathi
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Chagamreddy Venkata Durga Rani
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India.
| | - Vellaisamy Prakasam
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Gandikota Mahendranath
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - G K Sri Vidya
- Department of Molecular Biology and Biotechnology, SV Agriculture College, Tirupati, 517502, India
| | - C N Neeraja
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Raman Meenakshi Sundaram
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Satendra K Mangrauthia
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India.
| |
Collapse
|