1
|
Yang H, Wei X, Wang L, Zheng P, Li J, Zou Y, Wang L, Feng X, Xu J, Qin Y, Zhuang Y. Functional Characterization of PeVLN4 Involved in Regulating Pollen Tube Growth from Passion Fruit. Int J Mol Sci 2025; 26:2348. [PMID: 40076967 PMCID: PMC11899883 DOI: 10.3390/ijms26052348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Passion fruit (Passiflora edulis), mainly distributed in tropical and subtropical regions, is popular for its unique flavor and health benefits. The actin cytoskeleton plays a crucial role in plant growth and development, and villin is a key regulator of actin dynamics. However, the mechanism underlying the actin filament regulation of reproductive development in passion fruit remains poorly understood. Here, we characterized a villin isovariant in passion fruit, Passiflora edulis VLN4 (PeVLN4), highly and preferentially expressed in pollen. Subcellular localization analysis showed that PeVLN4 decorated distinct filamentous structures in pollen tubes. We next introduced PeVLN4 into Arabidopsis villin mutants to explore its functions on the growing pollen tubes. PeVLN4 rescued defects in the elongation of villin mutant pollen tubes. Pollen tubes expressing PeVLN4 were revealed to be less sensitive to latrunculin B, and PeVLN4 partially rescued defects in the actin filament organization of villin mutant pollen tubes. Additionally, biochemical assays revealed that PeVLN4 bundles actin filaments in vitro. Thus, PeVLN4 is an important regulator of F-actin stability and is required for normal pollen tube growth in passion fruit. This study provides a new insight into the function of the actin regulator villin involved in the reproduction development of passion fruit.
Collapse
Affiliation(s)
- Hanbing Yang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (X.W.); (J.X.)
| | - Lifeng Wang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Ping Zheng
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Junzhang Li
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Yutong Zou
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Lulu Wang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Xinyuan Feng
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (X.W.); (J.X.)
| | - Yuan Qin
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Yuhui Zhuang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| |
Collapse
|
2
|
Akenuwa OH, Gu J, Nebenführ A, Abel SM. Morphometric analysis of actin networks. Mol Biol Cell 2024; 35:ar146. [PMID: 39441713 PMCID: PMC11656467 DOI: 10.1091/mbc.e24-06-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
The organization of cytoskeletal elements is pivotal for coordinating intracellular transport in eukaryotic cells. Several quantitative measures based on image analysis have been proposed to characterize morphometric features of fluorescently labeled actin networks. While helpful in detecting differences in actin organization between treatments or genotypes, the accuracy of these measures could not be rigorously assessed due to a lack of ground-truth data to which they could be compared. To overcome this limitation, we utilized coarse-grained computer simulations of actin filaments and cross-linkers to generate synthetic actin networks with varying levels of bundling. We converted the simulated networks into pseudofluorescence images similar to images obtained using confocal microscopy. Using both published and novel analysis procedures, we extracted a series of morphometric parameters and benchmarked them against analogous measures based on the ground-truth actin configurations. Our analysis revealed a set of parameters that reliably reports on actin network density, orientation, ordering, and bundling. Application of these morphometric parameters to root epidermal cells of Arabidopsis thaliana revealed subtle changes in network organization between wild-type and mutant cells. This work provides robust measures that can be used to quantify features of actin networks and characterize changes in actin organization for different experimental conditions.
Collapse
Affiliation(s)
- Oghosa H. Akenuwa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Jinmo Gu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
3
|
Villar-Álvarez D, Leastro MO, Pallas V, Sánchez-Navarro JÁ. Identification of Host Factors Interacting with Movement Proteins of the 30K Family in Nicotiana tabacum. Int J Mol Sci 2024; 25:12251. [PMID: 39596316 PMCID: PMC11595209 DOI: 10.3390/ijms252212251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The interaction of viral proteins with host factors represents a crucial aspect of the infection process in plants. In this work, we developed a strategy to identify host factors in Nicotiana tabacum that interact with movement proteins (MPs) of the 30K family, a group of viral proteins around 30 kDa related to the MP of tobacco mosaic virus, which enables virus movement between plant cells. Using the alfalfa mosaic virus (AMV) MP as a model, we incorporated tags into its coding sequence, without affecting its functionality, enabling the identification of 121 potential interactors through in vivo immunoprecipitation of the tagged MP. Further analysis of five selected candidates (histone 2B (H2B), actin, 14-3-3A protein, eukaryotic initiation factor 4A (elF4A), and a peroxidase-POX-) were conducted using bimolecular fluorescence complementation (BiFC). The interactions between these factors were also studied, revealing that some form part of protein complexes associated with AMV MP. Moreover, H2B, actin, 14-3-3, and eIF4A interacted with other MPs of the 30K family. This observation suggests that, beyond functional and structural features, 30K family MPs may share common interactors. Our results demonstrate that tagging 30K family MPs is an effective strategy to identify host factors associated with these proteins during viral infection.
Collapse
Affiliation(s)
| | | | | | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CISC, 46022 Valencia, Spain; (D.V.-Á.); (M.O.L.); (V.P.)
| |
Collapse
|
4
|
LoRicco JG, Bagdan K, Sgambettera G, Malone S, Tomasi T, Lu I, Domozych DS. Chemically induced phenotype plasticity in the unicellular zygnematophyte, Penium margaritaceum. PROTOPLASMA 2024; 261:1233-1249. [PMID: 38967680 PMCID: PMC11511715 DOI: 10.1007/s00709-024-01962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Phenotypic plasticity allows a plant cell to alter its structure and function in response to external pressure. This adaptive phenomenon has also been important in the evolution of plants including the emergence of land plants from a streptophyte alga. Penium margaritaceum is a unicellular zygnematophyte (i.e., the group of streptophyte algae that is sister to land plants) that was employed in order to study phenotypic plasticity with a focus on the role of subcellular expansion centers and the cell wall in this process. Live cell fluorescence labeling, immunofluorescence labeling, transmission electron microscopy, and scanning electron microscopy showed significant subcellular changes and alterations to the cell wall. When treated with the actin-perturbing agent, cytochalasin E, cytokinesis is arrested and cells are transformed into pseudo-filaments made of up to eight or more cellular units. When treated with the cyclin-dependent kinase (CDK) inhibitor, roscovitine, cells converted to a unique phenotype with a narrow isthmus zone.
Collapse
Affiliation(s)
- Josephine G LoRicco
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA.
| | - Kaylee Bagdan
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Gabriel Sgambettera
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Stuart Malone
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Tawn Tomasi
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Iris Lu
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| |
Collapse
|
5
|
Inada N. Regulation of heterochromatin organization in plants. JOURNAL OF PLANT RESEARCH 2024; 137:685-693. [PMID: 38914831 DOI: 10.1007/s10265-024-01550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
Heterochromatin is a nuclear area that contains highly condensed and transcriptionally inactive chromatin. Alterations in the organization of heterochromatin are correlated with changes in gene expression and genome stability, which affect various aspects of plant life. Thus, studies of the molecular mechanisms that regulate heterochromatin organization are important for understanding the regulation of plant physiology. Microscopically, heterochromatin can be characterized as chromocenters that are intensely stained with DNA-binding fluorescent dyes. Arabidopsis thaliana exhibits distinctive chromocenters in interphase nuclei, and genetic studies combined with cytological analyses have identified a number of factors that are involved in heterochromatin assembly and organization. In this review, I will summarize the factors involved in the regulation of heterochromatin organization in plants.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Osaka, Japan.
| |
Collapse
|
6
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
7
|
Deep A, Pandey DK. Genome-Wide Analysis of VILLIN Gene Family Associated with Stress Responses in Cotton ( Gossypium spp.). Curr Issues Mol Biol 2024; 46:2278-2300. [PMID: 38534762 DOI: 10.3390/cimb46030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The VILLIN (VLN) protein plays a crucial role in regulating the actin cytoskeleton, which is involved in numerous developmental processes, and is crucial for plant responses to both biotic and abiotic factors. Although various plants have been studied to understand the VLN gene family and its potential functions, there has been limited exploration of VLN genes in Gossypium and fiber crops. In the present study, we characterized 94 VLNs from Gossypium species and 101 VLNs from related higher plants such as Oryza sativa and Zea mays and some fungal, algal, and animal species. By combining these VLN sequences with other Gossypium spp., we classified the VLN gene family into three distinct groups, based on their phylogenetic relationships. A more in-depth examination of Gossypium hirsutum VLNs revealed that 14 GhVLNs were distributed across 12 of the 26 chromosomes. These genes exhibit specific structures and protein motifs corresponding to their respective groups. GhVLN promoters are enriched with cis-elements related to abiotic stress responses, hormonal signals, and developmental processes. Notably, a significant number of cis-elements were associated with the light responses. Additionally, our analysis of gene-expression patterns indicated that most GhVLNs were expressed in various tissues, with certain members exhibiting particularly high expression levels in sepals, stems, and tori, as well as in stress responses. The present study potentially provides fundamental insights into the VLN gene family and could serve as a valuable reference for further elucidating the diverse functions of VLN genes in cotton.
Collapse
Affiliation(s)
- Akash Deep
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 835303, India
| | - Dhananjay K Pandey
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 835303, India
| |
Collapse
|