1
|
Li S, Sun Y, Hu Z, Dong F, Zhu J, Cao M, Wang C. Cloning and expression analysis of RhHsf24 gene in Rose (Rosa hybrida). Sci Rep 2025; 15:8182. [PMID: 40065040 PMCID: PMC11894197 DOI: 10.1038/s41598-025-93421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Rose (Rosa hybrida) is one of the most important ornamental and perfume industry crops worldwide, both economically and culturally. Abiotic stresses, such as high temperature and salt are crucial factors influencing the quality of roses. In this study, RhHsf24 was isolated from rose (R. hybrida 'Samantha'), which encodes 295 amino acids (aa). Sequence comparison with members of Arabidopsis Hsfs family revealed that this gene is most closely related to AtHsfB1; phylogenetic tree analysis with proteins from other species showed that it clusters with R. rugosa (RrHSF24), Fragaria vesca (FvHSFB1a) and Argentina anserina (AaHSF24), which are the closest relatives and belong to the class B heat shock transcription factors. RhHsf24 was localized in the nucleus. The qRT-PCR results indicated that the gene was expressed in roots, stems, leaves, flowers and buds. Expression analysis of the gene in leaves subjected to various temperatures and durations of heat stress treatment demonstrated that RhHsf24 gene expression is induced by heat stress. Under salt stress, the expression of the RhHsf24 gene generally exhibited a high level of expression with increasing concentration. The above results preliminarily clarified the biological function of RhHsf24, and provide a genetic resource and theoretical reference for the resistance breeding of roses.
Collapse
Affiliation(s)
- Sudan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252000, China
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaqi Sun
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Shandong Agricultural University, Taian, 271000, Shandong, China
| | - Zongxia Hu
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Shandong Agricultural University, Taian, 271000, Shandong, China
| | - Fei Dong
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jiao Zhu
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mengqi Cao
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Shandong Agricultural University, Taian, 271000, Shandong, China
| | - Chengpeng Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252000, China.
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
2
|
Sun L, You X, Gao L, Wen W, Song Y, Shen Z, Xing Q, An Y, Zhou P. Functional analysis of AtDPBF3, encoding a key member of the ABI5 subfamily involved in ABA signaling, in Arabidopsis thaliana under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109494. [PMID: 39826346 DOI: 10.1016/j.plaphy.2025.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Soil salinization is a major environmental stress limiting plant growth and development, affecting crop yields worldwide. We investigated the role of AtDPBF3, encoding a key member of the ABI5 subfamily, in the response to salt stress. The AtDPBF3 mutant (dpbf3) was significantly more sensitive to salt stress compared with wild type. Compared with leaves of salt-stressed wild type, those of salt-stressed dpbf3 exhibited severe decreases in chlorophyll content and photochemical efficiency (Fv/Fm), and disrupted ion homeostasis (higher Na+ content and lower K+ content). Comparative transcriptome analyses identified 457 genes that were differentially expressed in wild-type plants under salt stress but not in dpbf3 under salt stress. These differentially expressed genes encoded a range of products, including ion channels (e.g., AtCXX5, encoding a high-affinity K⁺ uptake/Na⁺ transporter), regulatory protein [e.g., AtSOS3, encoding Salt Overly Sensitive 3 (SOS3) that regulates SOS1 to reduce cytoplasmic Na⁺ levels through the SOS signaling pathway], sugar transporters [e.g., AtSUT4, encoding sucrose transporter 4 (SUT4)], and proteins involved in the stress response (e.g., AtLEA4-5, encoding LEA family proteins) and hormone signaling. These findings suggest that AtDPBF3 enhances salt tolerance by regulating many genes. qRT-PCR analyses confirmed the reliability of the transcriptome data, supporting the crucial role of AtDPBF3 in the salt stress response. These results lay the foundation for further research on the ABA signaling pathway and stress resistance mechanisms.
Collapse
Affiliation(s)
- Linjie Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangkai You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuncheng Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyu Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Xing
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Li HG, Yang L, Fang Y, Wang G, Lyu S, Deng S. A genome-wide-level insight into the HSF gene family of Rhodomyrtus tomentosa and the functional divergence of RtHSFA2a and RtHSFA2b in thermal adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109460. [PMID: 39793331 DOI: 10.1016/j.plaphy.2024.109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R. tomentosa. We identified 25 HSF genes in the R. tomentosa genome. They could be classified into three classes: HSFA, HSFB, and HSFC. Gene duplication events are major motivations for the expansion of the RtHSF gene family. Most of the genes in the same subclass share similar conserved motifs and gene structures. The cis-acting elements of the promoter regions of RtHSF genes are related to development, phytohormone signaling, and stress responses, and they vary among the genes even in the same subclass, resulting in different expression patterns. Especially, there exists subfunctionalization in the RtHSFA2 subfamily in responding to various abiotic stresses, viz. RtHSFA2a is sensitive to drought, salt, and cold stresses, whilst RtHSFA2b is mainly induced by heat stress. We further proved that RtHSFA2b might be of more importance in R. tomentosa thermotolerance, for Arabidopsis plants with overexpressed RtHSFA2b outperformed those with RtHSFA2a under heat stress, and RtHSFA2b had much higher transcription activity than RtHSFA2a in regulating certain heat shock response (HSR) genes. RtHSFA2a plays a role in transactivating RtHSFA2b. All these results provide a general prospect of the RtHSF gene family and enclose a basal thermal adaptation mechanism of R. tomentosa.
Collapse
Affiliation(s)
- Hui-Guang Li
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ling Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yujie Fang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Gui Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanwu Lyu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Li G, Shi X, Lin Q, Lv M, Chen J, Wen Y, Feng Z, Azam SM, Cheng Y, Wang S, Cao S. Genome-Wide Identification and Expression Analysis of Heat Shock Transcription Factors in Camellia sinensis Under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:697. [PMID: 40094585 PMCID: PMC11902171 DOI: 10.3390/plants14050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
The tea plant (Camellia sinensis) is an economically important crop that plays an important role not only in the beverage industry but also in the pharmaceutical industry. The environment has a great influence on the quality of the tea plant. Heat shock factors (Hsfs) are transcriptional regulators that control the plant response to adversity. However, only a limited number of studies have reported the Hsf gene in Camellia sinensis, and most of these reports involve high-temperature, drought, and salt stress. Research on light, dark, and cold stress is limited. In this study, 22 CsHsf genes were obtained by whole genome sequencing and found to be located on 11 chromosomes. In addition, the gene structure, protein motif, and phylogeny were studied. We classified the genes into three major subfamilies: CsHsfA, CsHsfB, and CsHsfC. Interestingly, we found that there was more alignment between CsHsf and Hsf genes in dicotyledons, including Arabidopsis thaliana and Solanum lycopersicum, than in the monocotyledon Oryza sativa. The expression of many CsHsf genes was affected by low-temperature, light, and dark abiotic stresses. Notably, CsHsf15 and CsHsf16 showed high induction rates under both light and cold stress, and both genes carried cis-acting elements associated with light and low-temperature responses. These results lay a solid groundwork for further investigations into the involvement of CsHsf genes in the response of Camellia sinensis to abiotic stresses.
Collapse
Affiliation(s)
- Guimin Li
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (G.L.); (J.C.)
| | - Xinying Shi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.S.); (Q.L.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.S.); (Q.L.)
| | - Mengmeng Lv
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.W.)
| | - Jing Chen
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (G.L.); (J.C.)
| | - Yingxin Wen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.W.)
| | - Zhiyi Feng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (S.M.A.)
| | - Syed Muhammad Azam
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (S.M.A.)
| | - Yan Cheng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (G.L.); (J.C.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.W.)
| |
Collapse
|
5
|
Wei J, Cui J, Zheng G, Dong X, Wu Z, Fang Y, Sa E, Zhu S, Li B, Wei H, Liu Z. BnaHSFA2, a heat shock transcription factor interacting with HSP70 and MPK11, enhances freezing tolerance in transgenic rapeseed. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109423. [PMID: 39719774 DOI: 10.1016/j.plaphy.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.) under freezing stress, and the expression levels of BnaHsfA2 showed a gradual increasing trend over three years. In this study, BnaHsfA2 was isolated and characterized. Its' encoding protein has a relatively high phylogenetic relationship with the AtHsfA2; Subcellular localization results indicated that BnaHsfA2 was a nuclear protein; BnaHsfA2 exhibited higher expression levels in mature seed coats and seeds, seedling leaves, flowering filaments as well as anthers. The transcription level of BnaHsfA2 in leaves of rapeseed seedling was significantly increased at -4 °C stress for 12h and 24h. BnaHsfA2 promoter has many stress-responsive cis-regulatory elements. β-glucuronidase (GUS) staining assays indicated that the BnaHsfA2 promoter was induced under freezing stress, and it's 5'-deletion fragment from 465 to 1284 was essential for the transcriptional expression in response to freezing stress. The BnaHsfA2-transgenic rapeseed lines showed greater freezing resistance in comparison with the wild type (WT); the BnaHsfA2 overexpression lines showed increased antioxidant enzyme activities, decreased level of lipid peroxidation and reactive oxygen species (ROS) accumulation compared to the WT. Finally, yeast two-hybrid assay demonstrated that BnaHsfA2 interacted with rapeseed mitogen-activated protein kinase 11 (BnaMPK11) and heat shock factor-binding protein (BnaHsp70). The study will pave the way for further understanding the regulatory networks of BnaHsfA2 in plants under abiotic stress.
Collapse
Affiliation(s)
- Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Guoqiang Zheng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyun Dong
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zefeng Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ermei Sa
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Shujun Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Baojing Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Hongyan Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
6
|
Peng Z, Rehman A, Jiang X, Tian C, Wang Z, Li H, Wang X, Ahmad A, Azhar MT, Du X, He S. Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109406. [PMID: 39700916 DOI: 10.1016/j.plaphy.2024.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Owing to the scarcity of cultivable land in China, the agricultural sector is primarily focused on grain and oil crops. Simultaneously, the cultivation of cotton has gradually shifted towards regions characterized by elevated soil salinity levels. Additionally, the mechanism behind cotton's ability to tolerate salt remains elusive. In this study, we identified the Z9807 genotype as highly tolerant to salt stress, exhibiting superior leaf wilting resistance, antioxidant activity, catalase activity, K+/Na+ ratio, and growth compared to the salt-sensitive ZJ0102. Comparative transcriptome analysis revealed marked differences in salt stress responses between Z9807 and ZJ0102. This study identified a considerable number of differentially expressed genes associated with salt tolerance across multiple time points. By integration of QTL and GWAS mapping data, we successfully identified 621 candidate genes associated with salt tolerance. Weighted gene correlation network analysis exhibited three co-expression modules related to salt-tolerant Z9807 samples, ultimately identifying 15 core salt-tolerant candidate genes. We also conducted in-depth research on the salt tolerance of the stress-associated protein (SAP) GhSAP6 (GhSAP6_At and GhSAP6_Dt homologs). Results revealed that these candidate genes may inhibit salt tolerance through Virus-Induced Gene Silencing (VIGS) and transgenic overexpression assays conducted in Arabidopsis thaliana. Furthermore, we used yeast two-hybrid and luciferase assay experiments to confirm the ubiquitin degradation pathway between selected interacting proteins and verified the interaction with RAD23C. This study will provide new insights into the mechanisms related to salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuran Jiang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Adeel Ahmad
- Central Cotton Research Institute, Pakistan Central Cotton Committee, Multan, 60000, Pakistan
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| |
Collapse
|
7
|
Xu M, Zhang Z, Ling C, Jiao Y, Zhang X. Genome-Wide Identification of the IQM Gene Family and Their Transcriptional Responses to Abiotic Stresses in Kiwifruit ( Actinidia eriantha). Genes (Basel) 2024; 15:147. [PMID: 38397137 PMCID: PMC10887524 DOI: 10.3390/genes15020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
IQM is a plant-specific calcium-binding protein that plays a pivotal role in various aspects of plant growth response to stressors. We investigated the IQM gene family and its expression patterns under diverse abiotic stresses and conducted a comprehensive analysis and characterization of the AeIQMs, including protein structure, genomic location, phylogenetic relationships, gene expression profiles, salt tolerance, and expression patterns of this gene family under different abiotic stresses. Based on phylogenetic analysis, these 10 AeIQMs were classified into three distinct subfamilies (I-III). Analysis of the protein motifs revealed a considerable level of conservation among these AeIQM proteins within their respective subfamilies in kiwifruit. The genomic distribution of the 10 AeIQM genes spanned across eight chromosomes, where four pairs of IQM gene duplicates were associated with segmental duplication events. qRT-PCR analysis revealed diverse expression patterns of these AeIQM genes under different hormone treatments, and most AeIQMs showed inducibility by salt stress. Further investigations indicated that overexpression of AeIQMs in yeast significantly enhanced salt tolerance. These findings suggest that AeIQM genes might be involved in hormonal signal transduction and response to abiotic stress in Actinidia eriantha. In summary, this study provides valuable insights into the physiological functions of IQMs in kiwifruit.
Collapse
Affiliation(s)
- Minyan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhi Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China
| | - Yuhuan Jiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Wang N, Shu X, Zhang F, Song G, Wang Z. Characterization of the Heat Shock Transcription Factor Family in Lycoris radiata and Its Potential Roles in Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:271. [PMID: 38256823 PMCID: PMC10819275 DOI: 10.3390/plants13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Heat shock transcription factors (HSFs) are an essential plant-specific transcription factor family that regulates the developmental and growth stages of plants, their signal transduction, and their response to different abiotic and biotic stresses. The HSF gene family has been characterized and systematically observed in various species; however, research on its association with Lycoris radiata is limited. This study identified 22 HSF genes (LrHSFs) in the transcriptome-sequencing data of L. radiata and categorized them into three classes including HSFA, HSFB, and HSFC, comprising 10, 8, and 4 genes, respectively. This research comprises basic bioinformatics analyses, such as protein sequence length, molecular weight, and the identification of its conserved motifs. According to the subcellular localization assessment, most LrHSFs were present in the nucleus. Furthermore, the LrHSF gene expression in various tissues, flower developmental stages, two hormones stress, and under four different abiotic stresses were characterized. The data indicated that LrHSF genes, especially LrHSF5, were essentially involved in L. radiata development and its response to different abiotic and hormone stresses. The gene-gene interaction network analysis revealed the presence of synergistic effects between various LrHSF genes' responses against abiotic stresses. In conclusion, these results provided crucial data for further functional analyses of LrHSF genes, which could help successful molecular breeding in L. radiata.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|