1
|
Bocianowski J, Nowosad K, Kozak B, Martofel J. Identification of SNP markers associated with yield in winter oilseed rape (Brassica napus L.) hybrids. J Appl Genet 2025:10.1007/s13353-025-00953-9. [PMID: 39985735 DOI: 10.1007/s13353-025-00953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Winter oilseed rape (Brassica napus), a crucial crop in temperate regions, is a key contributor to global vegetable oil production and an essential component of crop rotations due to its ability to improve soil structure and fertility. Enhancing its yield is vital for meeting the increasing demand for sustainable oil production, supporting food security, and optimizing biofuel production, while also ensuring the economic viability of agricultural systems in colder climates. The aim of the research was to determine association between SNP molecular markers and rapeseed yield. The plant material for this study consisted of 276 oilseed rape hybrids. The experiment was conducted in four localities: Borowo, Kończewice, Małyszyn, and Strzelce. The mean yield values ranged from 0.07 kg (for hybrid EH_20212 in Małyszyn) to 9.10 kg (for hybrid EH_20410 in Kończewice). The genotype matrix for 276 hybrids was constructed using marker data from the parental genotypes of inbred individuals (maternal and paternal lines). The matrix was coded as {- 1, 0, 1}, assuming an additive effect of the alleles. A total of 13,116 SNP markers were identified. For association mapping, 12,581 polymorphic markers were used. The results of the observation of the yield and sequencing were used for association mapping, which ultimately resulted in the selection of twenty-six molecular markers important (LOD > 5.0) simultaneously in all four localities.
Collapse
Affiliation(s)
- Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Kamila Nowosad
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363, Wrocław, Poland.
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363, Wrocław, Poland
| | - Jakub Martofel
- Borowo Branch, Plant Breeding Strzelce Ltd. Co, IHAR Group, 64-020, Czempiń, Poland
| |
Collapse
|
2
|
Tomkowiak A, Jamruszka T, Bocianowski J, Sobiech A, Jarzyniak K, Lenort M, Mikołajczyk S, Żurek M. Transcriptomic Characterization of Genes Harboring Markers Linked to Maize Yield. Genes (Basel) 2024; 15:1558. [PMID: 39766825 PMCID: PMC11675883 DOI: 10.3390/genes15121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify regions of the genome that are associated with various phenotypic traits, including yield, which is of fundamental importance for understanding and manipulating these regions. OBJECTIVES The aim of the study was to analyze the expression of candidate genes associated with maize yield. To better understand the function of the analyzed genes in increasing maize yield, their expression in different organs and tissues was also assessed using publicly available transcriptome data. METHODS RT-qPCR analyses were performed using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Each of the performed RT-qPCR experiments consisted of three biological replicates and three technical replicates, the results of which were averaged. RESULTS The research results allowed us to select three out of six candidate genes (cinnamoyl-CoA reductase 1-CCR1, aspartate aminotransferase-AAT and sucrose transporter 1-SUT1), which can significantly affect grain yield in maize. Not only our studies but also literature reports clearly indicate the participation of CCR1, AAT and SUT1 in the formation of yield. Identified molecular markers located within these genes can be used in breeding programs to select high yielding maize genotypes.
Collapse
Affiliation(s)
- Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Karolina Jarzyniak
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Maciej Lenort
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Sylwia Mikołajczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Monika Żurek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
3
|
Tomkowiak A. Identification of SNP and SilicoDArT Markers and Characterization of Their Linked Candidate Genes Associated with Maize Smut Resistance. Int J Mol Sci 2024; 25:11358. [PMID: 39518909 PMCID: PMC11547173 DOI: 10.3390/ijms252111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The implementation of biological advancements in agricultural production is the response to the needs of the agricultural sector in the 21st century, enabling increased production and improved food quality. Biological progress in the maize breeding and seed industries is unique in terms of their social and ecological innovation aspects. It affects agricultural productivity and the adaptation of cultivated maize varieties to market demands and changing climate conditions without compromising the environment. Modern maize resistance breeding relies on a wide range of molecular genetic research techniques. These technologies enable the identification of genomic regions associated with maize smut resistance, which is crucial for characterizing and manipulating these regions. Therefore, the aim of this study was to identify molecular markers (SilicoDArT and SNP) linked to candidate genes responsible for maize smut resistance, utilizing next-generation sequencing, as well as association and physical mapping. By using next-generation sequencing (NGS) and statistical tools, the analyzed maize genotypes were divided into heterotic groups, which enabled the prediction of the hybrid formula in heterosis crosses. In addition, Illumina sequencing identified 60,436 SilicoDArT markers and 32,178 SNP markers (92,614 in total). For association mapping, 32,900 markers (26,234 SilicoDArT and 6666 SNP) meeting the criteria (MAF > 0.25 and the number of missing observations < 10%) were used. Among the selected markers, 61 were highly statistically significant (LOD > 2.3). Among the selected 61 highly statistically significant markers (LOD > 2.3), 10 were significantly associated with plant resistance to maize smut in two locations (Smolice and Kobierzyce). Of the 10 selected markers, 3 SilicoDArT (24016548, 2504588, 4578578) and 3 SNP (4779579, 2467511, 4584208) markers were located within genes. According to literature reports, of these six genes, three (ATAD3, EDM2, and CYP97A3) are characterized proteins that may play a role in the immune response that develops in response to corn smut infection. In the case of genotypes belonging to the same origin groups, markers linked to these genes can be used to select varieties resistant to corn smut. These markers will also be tested on genotypes belonging to other maize origin groups to demonstrate their universality.
Collapse
Affiliation(s)
- Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-631 Poznań, Poland
| |
Collapse
|
4
|
Bocianowski J. Using NGS Technology and Association Mapping to Identify Candidate Genes Associated with Fusarium Stalk Rot Resistance. Genes (Basel) 2024; 15:106. [PMID: 38254995 PMCID: PMC10815114 DOI: 10.3390/genes15010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Stalk rot caused by Fusarium fungi is one of the most widespread and devastating diseases of maize, and the introduction of resistant genotypes is one of the most effective strategies for controlling the disease. Breeding genotypes with genetically determined resistance will also allow less use of crop protection products. The aim of the research was to identify molecular markers and associated candidate genes determining maize plant resistance to Fusarium stalk rot. The plant material for this study consisted of 122 maize hybrids. The experiment was conducted in two localities: Smolice and Kobierzyce. The Fusarium stalk rot values ranged from 1.65% (for genotype G01.10) to 31.18% (for genotype G03.07) in Kobierzyce and from 0.00% (for 58 genotypes) to 6.36% (G05.03) in Smolice. The analyzed genotypes were simultaneously subjected to next-generation sequencing using the Illumina platform. Illumina sequencing identified 60,436 SilicoDArT markers and 32,178 SNP markers (92,614 in total). For association mapping, 32,900 markers (26,234 SilicoDArT and 6666 SNP) meeting the criteria (MAF > 0.25 and the number of missing observations <10%) were used. The results of the observation of the degree of infection and sequencing were used for association mapping, which ultimately resulted in the selection of ten molecular markers important at both places. Among the identified markers, two SNP markers that are located inside candidate genes play an important role. Marker 4772836 is located inside the serine/threonine-protein kinase bsk3 gene, while marker 4765764 is located inside the histidine kinase 1 gene. Both genes can be associated with plant resistance to Fusarium stalk rot, and these genes can also be used in breeding programs to select resistant varieties.
Collapse
Affiliation(s)
- Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| |
Collapse
|
5
|
Nowak B, Tomkowiak A, Sobiech A, Bocianowski J, Kowalczewski PŁ, Spychała J, Jamruszka T. Identification and Analysis of Candidate Genes Associated with Yield Structure Traits and Maize Yield Using Next-Generation Sequencing Technology. Genes (Basel) 2023; 15:56. [PMID: 38254946 PMCID: PMC10815399 DOI: 10.3390/genes15010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The main challenge of agriculture in the 21st century is the continuous increase in food production. In addition to ensuring food security, the goal of modern agriculture is the continued development and production of plant-derived biomaterials. Conventional plant breeding methods do not allow breeders to achieve satisfactory results in obtaining new varieties in a short time. Currently, advanced molecular biology tools play a significant role worldwide, markedly contributing to biological progress. The aim of this study was to identify new markers linked to candidate genes determining grain yield. Next-generation sequencing, gene association, and physical mapping were used to identify markers. An additional goal was to also optimize diagnostic procedures to identify molecular markers on reference materials. As a result of the conducted research, 19 SNP markers significantly associated with yield structure traits in maize were identified. Five of these markers (28629, 28625, 28640, 28649, and 29294) are located within genes that can be considered candidate genes associated with yield traits. For two markers (28639 and 29294), different amplification products were obtained on the electrophorograms. For marker 28629, a specific product of 189 bp was observed for genotypes 1, 4, and 10. For marker 29294, a specific product of 189 bp was observed for genotypes 1 and 10. Both markers can be used for the preliminary selection of well-yielding genotypes.
Collapse
Affiliation(s)
- Bartosz Nowak
- Smolice Plant Breeding Ltd., IHAR Group, Smolice 146, 63-740 Kobylin, Poland;
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (J.S.); (T.J.)
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (J.S.); (T.J.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (J.S.); (T.J.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (J.S.); (T.J.)
| |
Collapse
|