1
|
Salarian L, Ilkhanipoor H, Amirhakimi A, Afshar Z, Nahid S, Moradi Ardekani F, Rahimi N, Yazdani N, Nikravesh A, Beyzaei Z, Moravej H. Epidemiology of inherited metabolic disorders in newborn screening: insights from three years of experience in Southern Iran. Orphanet J Rare Dis 2025; 20:84. [PMID: 40001143 PMCID: PMC11853994 DOI: 10.1186/s13023-025-03602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Newborn screening is essential for the early detection of congenital genetic and metabolic disorders, enabling timely intervention to prevent morbidity, mortality, and disabilities associated with inherited metabolic disorders (IMDs). The Iranian Neonatal Screening Program piloted in Fars Province, screening nearly 100% of neonates for 20 disorders. This study aimed to assess the epidemiology of these metabolic diseases. From March 2019 to September 2021, 138,689 neonates were screened using tandem mass spectrometry (MS/MS) on dried blood spots. Those with abnormal results were referred to pediatric endocrinology and metabolism specialists for confirmatory testing per American College of Medical Genetics guidelines. RESULTS Among the screened neonates, 139 patients of IMDs were identified, yielding an estimated birth prevalence of 1:1000. The positive cases included 55 aminoacidopathies, 47 organic acidemias, 31 fatty acid oxidation disorders, and 6 urea cycle defects were detected. The most prevalent IMDs were phenylalanine metabolism disorders, short-chain acyl-CoA dehydrogenase deficiency, 3-methylcrotonyl-CoA carboxylase deficiency, and methylmalonic acidemia. Notably, the prevalence of IMDs in Fars Province is significantly higher than average global statistics. Additionally, we observed that certain disorders previously deemed very rare exhibit a relatively high prevalence in this region. CONCLUSIONS Our data highlight the efficiency and robustness of neonatal screening for IMD in Iran. It demonstrates the need for expanded screening efforts across the entire country. One limitation of this study is that the screening was conducted in only one state, which may not reflect the broader population of Iran. Future research should involve nationwide implementation of screening programs to validate our findings and assess the prevalence of IMDs in diverse regions. Furthermore, exploring the applicability of our screening methods in other Middle Eastern countries could help promote early and life-changing diagnoses across the region.
Collapse
Affiliation(s)
- Leila Salarian
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Homa Ilkhanipoor
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anis Amirhakimi
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zhila Afshar
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nahid
- Department of Biochemical Genetics, Saman Lab, Shiraz, Iran
| | - Fariba Moradi Ardekani
- Head of Non-Communicable Diseases Group, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nazila Rahimi
- Public Health expert Non-Communicable Diseases Group, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Yazdani
- Department of Nursing, Community based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolhossein Nikravesh
- Department of Pediatric Endocrinology & Metabolism, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Beyzaei
- Shiraz Transplant Research Center (STRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Moravej
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
3
|
Messina M, Arena A, Iacobacci R, La Spina L, Meli C, Raudino F, Ruggieri M. Butyrylcarnitine Elevation in Newborn Screening: Reducing False Positives and Distinguishing between Two Rare Diseases through the Evaluation of New Ratios. Biomedicines 2023; 11:3247. [PMID: 38137468 PMCID: PMC10741594 DOI: 10.3390/biomedicines11123247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
One of the main challenges of newborn screening programs, which screen for inherited metabolic disorders, is cutting down on false positives (FPs) in order to avoid family stresses, additional analyses, and unnecessary costs. False positives are partly caused by an insubstantial number of robust biomarkers in evaluations. Another challenge is how to distinguish between diseases which share the same primary marker and for which secondary biomarkers are just as highly desirable. Focusing on pathologies that involve butyrylcarnitine (C4) elevation, such as short-chain acylCoA dehydrogenase deficiency (SCADD) and isobutyrylCoA dehydrogenase deficiency (IBDD), we investigated the acylcarnitine profile of 121 newborns with a C4 increase to discover secondary markers to achieve two goals: reduce the FP rate and discriminate between the two rare diseases. Analyses were carried out using tandem mass spectrometry with whole blood samples spotted on filter paper. Seven new biomarkers (C4/C0, C4/C5, C4/C5DC\C6OH, C4/C6, C4/C8, C4/C14:1, C4/C16:1) were identified using a non-parametric ANOVA analysis. Then, the corresponding cut-off values were found and applied to the screening program. The seven new ratios were shown to be robust (p < 0.001 and p < 0.01, 0.0937 < ε2 < 0.231) in discriminating between FP and IBDD patients, FP and SCADD patients, or SCADD and IBDD patients. Our results suggest that the new ratios are optimal indicators for identifying true positives, distinguishing between two rare diseases that share the same primary biomarker, improving the predictive positive value (PPV) and reducing the false positive rate (FPR).
Collapse
Affiliation(s)
- MariaAnna Messina
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Alessia Arena
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Riccardo Iacobacci
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Luisa La Spina
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Concetta Meli
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Federica Raudino
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
| | - Martino Ruggieri
- Expanded Newborn Screening Laboratory, Newborn Screening and Metabolic Diseases Unit, University-Polyclinic “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.A.); (R.I.); (L.L.S.); (C.M.); (F.R.); (M.R.)
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Ye S, Li S, Su C, Shi Z, Li H, Hong J, Wang S, Zhao J, Zheng W, Dong S, Ye S, Lou Y, Zhou Z, Du J. Characterization of microbial community and antibiotic resistome in intra urban water, Wenzhou China. Front Microbiol 2023; 14:1169476. [PMID: 37396356 PMCID: PMC10311006 DOI: 10.3389/fmicb.2023.1169476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The present study investigated the water quality index, microbial composition and antimicrobial resistance genes in urban water habitats. Combined chemicals testing, metagenomic analyses and qualitative PCR (qPCR) were conducted on 20 locations, including rivers from hospital surrounds (n = 7), community surrounds (n = 7), and natural wetlands (n = 6). Results showed that the indexes of total nitrogen, phosphorus, and ammonia nitrogen of hospital waters were 2-3 folds high than that of water from wetlands. Bioinformatics analysis revealed a total of 1,594 bacterial species from 479 genera from the three groups of water samples. The hospital-related samples had the greatest number of unique genera, followed by those from wetlands and communities. The hospital-related samples contained a large number of bacteria associated with the gut microbiome, including Alistipes, Prevotella, Klebsiella, Escherichia, Bacteroides, and Faecalibacterium, which were all significantly enriched compared to samples from the wetlands. Nevertheless, the wetland waters enriched bacteria from Nanopelagicus, Mycolicibacterium and Gemmatimonas, which are typically associated with aquatic environments. The presence of antimicrobial resistance genes (ARGs) that were associated with different species origins in each water sample was observed. The majority of ARGs from hospital-related samples were carried by bacteria from Acinetobacter, Aeromonas and various genera from Enterobacteriaceae, which each was associated with multiple ARGs. In contrast, the ARGs that were exclusively in samples from communities and wetlands were carried by species that encoded only 1 to 2 ARGs each and were not normally associated with human infections. The qPCR showed that water samples of hospital surrounds had higher concentrations of intI1 and antimicrobial resistance genes such as tetA, ermA, ermB, qnrB, sul1, sul2 and other beta-lactam genes. Further genes of functional metabolism reported that the enrichment of genes associated with the degradation/utilization of nitrate and organic phosphodiester were detected in water samples around hospitals and communities compared to those from wetlands. Finally, correlations between the water quality indicators and the number of ARGs were evaluated. The presence of total nitrogen, phosphorus, and ammonia nitrogen were significantly correlated with the presence of ermA and sul1. Furthermore, intI1 exhibited a significant correlation with ermB, sul1, and blaSHV, indicating a prevalence of ARGs in urban water environments might be due to the integron intI1's diffusion-promoting effect. However, the high abundance of ARGs was limited to the waters around the hospital, and we did not observe the geographical transfer of ARGs along with the river flow. This may be related to water purifying capacity of natural riverine wetlands. Taken together, continued surveillance is required to assess the risk of bacterial horizontal transmission and its potential impact on public health in the current region.
Collapse
Affiliation(s)
- Sheng Ye
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenjun Su
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhuqing Shi
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Heng Li
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiawen Hong
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
- Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Shengke Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jingyan Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiji Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shixuan Dong
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shuhan Ye
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jimei Du
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Ravindranath A, Sarma MS. Mitochondrial hepatopathy: Anticipated difficulties in management of fatty acid oxidation defects and urea cycle defects. World J Hepatol 2022; 14:180-194. [PMID: 35126847 PMCID: PMC8790400 DOI: 10.4254/wjh.v14.i1.180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty acid oxidation defects (FAOD) and urea cycle defects (UCD) are among the most common metabolic liver diseases. Management of these disorders is dotted with challenges as the strategies differ based on the type and severity of the defect. In those with FAOD the cornerstone of management is avoiding hypoglycemia which in turn prevents the triggering of fatty acid oxidation. In this review, we discuss the role of carnitine supplementation, dietary interventions, newer therapies like triheptanoin, long-term treatment and approach to positive newborn screening. In UCD the general goal is to avoid excessive protein intake and indigenous protein breakdown. However, one size does not fit all and striking the right balance between avoiding hyperammonemia and preventing deficiencies of essential nutrients is a formidable task. Practical issues during the acute presentation including differential diagnosis of hyperammonemia, dietary dilemmas, the role of liver transplantation, management of the asymptomatic individual and monitoring are described in detail. A multi-disciplinary team consisting of hepatologists, metabolic specialists and dieticians is required for optimum management and improvement in quality of life for these patients.
Collapse
Affiliation(s)
- Aathira Ravindranath
- Division of Pediatric Gastroenterology, Institute of Gastrointestinal Sciences, Apollo BGS Hospitals, Mysore 570023, Karnataka, India
| | - Moinak Sen Sarma
- Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|