1
|
He X, Pan X, Xiong C, Zhang Y, Hong D, Fang H, Cui P. Rare-Earth Metalloligands for Low -Valent Cobalt Complexes: Fine Electronic Tuning via Co→RE Dative Interactions. Inorg Chem 2024; 63:8155-8162. [PMID: 38651290 DOI: 10.1021/acs.inorgchem.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Rare-earth metalloligand supported low-valent cobalt complexes were synthesized by utilizing a small-sized heptadentate phosphinomethylamine LsNH3 and a large-sized arene-anchored hexadentate phosphinomethylamine LlArH3 ligand precursors. The RE(III)-Co(-I)-N2 (RE = Sc, Lu, Y, Gd, La) complexes containing rare-earth metals including the smallest Sc and largest La were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The Co(-I)→RE(III) dative interactions were all polarized with major contributions from the 3dz2 orbital of the cobalt center, which was slightly affected by the identity of rare-earth metalloligands. The IR spectroscopic data and redox potentials obtained from cyclic voltammetry revealed that the electronic property of the Co(-I) center was finely tuned by the rare-earth metalloligand, which was revealed by variation of the ligand systems containing LsN, LmN, and LlAr. Unlike the direct alteration of the electronic property of metal center via an ancillary ligand, such a series of rare-earth metalloligand represents a smooth strategy to tune the electronic property of transition metals.
Collapse
Affiliation(s)
- Xiuyan He
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Chunyan Xiong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Yun Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
2
|
Zhang Y, Pan X, Xu M, Xiong C, Hong D, Fang H, Cui P. Dinitrogen Complexes of Cobalt(-I) Supported by Rare-Earth Metal-Based Metalloligands. Inorg Chem 2023; 62:3836-3846. [PMID: 36800534 DOI: 10.1021/acs.inorgchem.2c04099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Sequential reactions of heptadentate phosphinoamine LH3 with rare-earth metal tris-alkyl precursor (Me3SiCH2)3Ln(THF)2 (Ln = Sc, Lu, Yb, Y, Gd) and a low-valent cobalt complex (Ph3P)3CoI afforded rare-earth metal-supported cobalt iodide complexes. Reduction of these iodide complexes under N2 allowed the isolation of the first series of dinitrogen complexes of Co(-I) featuring dative Co(-I) → Ln (Ln = Sc, Lu, Yb, Y, Gd) bonding interactions. These compounds were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The correlation of N-N vibrational frequencies with the pKa of [Ln(H2O)6]3+ showed that strongest activation of N2 was achieved with the least Lewis acidic Gd(III) ion. Interestingly, these Ln-Co-N2 complexes catalyzed silylation of N2 in the presence of KC8 and Me3SiCl with turnover numbers (TONs) up to 16, where the lutetium-supported Co(-I) complex showed the highest activity within the series. The role of the Lewis acidic Ln(III) was crucial to achieve catalytic turnovers and tunable reactivity toward N2 functionalization.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Min Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Chunyan Xiong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
3
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
4
|
Kuriyama S, Nishibayashi Y. Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
6
|
Kim S, Loose F, Chirik PJ. Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chem Rev 2020; 120:5637-5681. [DOI: 10.1021/acs.chemrev.9b00705] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sangmin Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Florian Loose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
3-Methylindole-Based Tripodal Tetraphosphine Ruthenium Complexes in N2 Coordination and Reduction and Formic Acid Dehydrogenation. INORGANICS 2017. [DOI: 10.3390/inorganics5040073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Imayoshi R, Nakajima K, Takaya J, Iwasawa N, Nishibayashi Y. Synthesis and Reactivity of Iron- and Cobalt-Dinitrogen Complexes Bearing PSiP-Type Pincer Ligands toward Nitrogen Fixation. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700569] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryuji Imayoshi
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| | - Kazunari Nakajima
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| | - Jun Takaya
- Department of Chemistry; Tokyo Institute of Technology; O-okayama, Meguro-ku 152-8551 Tokyo Japan
| | - Nobuharu Iwasawa
- Department of Chemistry; Tokyo Institute of Technology; O-okayama, Meguro-ku 152-8551 Tokyo Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| |
Collapse
|