1
|
Li Z, Zhang M, Qiao L, Du Z, Gbeinbo FL, Yao Z, Zhu G, He Y. Knockdown of Oatp and Mdr Transporter Genes Enhances Cardenolide Toxicity to the Noncardenolide Feeder, Nilaparvata lugens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8833-8841. [PMID: 40181752 DOI: 10.1021/acs.jafc.4c13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Insect adaptation to toxic cardenolides has been a model system to study convergent evolution between plants and herbivores. It was hypothesized that Organic anion-transporting polypeptides (Oatps) and multidrug transporters (Mdrs) provide basal resistance against cardenolides in a nonadapted insect. However, there is still little evidence to support this hypothesis. A noncardenolide feeder and an important rice pest, Nilaparvata lugens, were used to test this hypothesis. Bioassays revealed that two representative cardenolides, ouabain, and digoxin, demonstrated significant toxicity against N. lugens. The suppression of the expression levels of six Oatp genes and three Mdr genes by the RNAi did not result in any significant lethal phenotype in N. lugens. However, the knockdown of certain Oatp and Mdr genes significantly enhances the oral toxicity of ouabain and digoxin to N. lugens. The findings of our study support that Oatps and Mdrs are key transporters in N. lugens protection against dietary cardenolides.
Collapse
Affiliation(s)
- Zengxin Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Zhejiang Key Enterprise Research Institute of Nanotechnology and Biopesticides, Hangzhou 310021, China
| | - Liya Qiao
- Zhejiang Key Enterprise Research Institute of Nanotechnology and Biopesticides, Hangzhou 310021, China
| | - Zhao Du
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fiderikumo Livingstone Gbeinbo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangyi Yao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Xie X, Shang F, Liu Y, Niu J, Wang JJ. Identification of RNAi efficiency-related gene in the green peach aphid, Myzus persicae (Hemiptera), based on comparative transcriptomics. PEST MANAGEMENT SCIENCE 2025. [PMID: 40202112 DOI: 10.1002/ps.8804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND RNA interference (RNAi) is a promising strategy for aphid control; however, its practical application has been limited by low efficiency in aphids. To address this, we combined transcriptomic analysis with an 'RNAi of RNAi' approach to identify genes associated with RNAi efficiency in green peach aphid Myzus persicae. RESULTS Using the artificial diet-mediated dsRNA delivery method, we observed that ingestion of both dsMpHunchback and dsfusion (a dsRNA targeting three genes) induced RNAi effects. These included significant gene silencing and reduced nymph production at 24, 36, and 48 h post-feeding compared to dsGFP. Expression profiling of core RNAi machinery revealed that samples from 36 and 48 h post-feeding were critical for RNAi efficiency, prompting their selection for transcriptome sequencing. Weighted gene co-expression network analysis (WGCNA) and analysis of Differentially Expressed Genes (DEGs) were employed to elucidate the RNA-seq data. Subsequent validation through RNAi of RNAi assay demonstrated functional roles for genes encoding basic region leucine zipper (gene11325), cathepsin B-like (gene12476), glucosidase KIAA1161-like (gene6489), and piggyBac transposable element-derived protein 3-like (gene7736). Notably, gene11325 and gene6489 were associated with RNAi efficiency, whereas gene12476 and gene7736 appeared to exert compensatory effects that counteracted the RNAi effects induced by dsMpHunchback and dsfusion. CONCLUSION These findings highlight the functional diversity of genes influencing RNAi efficiency in green peach aphid, enhancing our understanding of RNAi mechanisms and establishing a foundation for optimizing RNAi-based aphid control strategies. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiucheng Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Yujing Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
3
|
Wang L, Tian SH, Zhao W, Wang JJ, Wei DD. Overexpression of ABCB transporter genes confer multiple insecticide tolerances in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105690. [PMID: 38072545 DOI: 10.1016/j.pestbp.2023.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Bactrocera dorsalis is a notable invasive pest that has developed resistance to several commonly used insecticides in the field, such as avermectin, beta-cypermethrin and malathion. Investigating the mechanisms of insecticide resistance in this pest is of paramount importance for ensuring its effective control. The ATP-binding cassette transporter subfamily B (ABCB) genes, responsible for encoding transmembrane efflux transporters, represent a potential source of insecticide detoxification activity or transportation that remains largely unexplored in B. dorsalis. In this study, seven BdABCB genes were identified and comprehensive analyzed based on the latest genome and transcriptome dataset. Subsequently, we characterized the expression profiles of these genes across different development stages and tissues, as well as under different insecticide exposures. The results showed that the BdABCB genes were expressed at all stages in B. dorsalis, with BdABCB2 and BdABCB7 being highly expressed in the pupal stage, while BdABCB5 and BdABCB6 were highly expressed in the larval stage. Besides, the BdABCBs were highly expressed in the detoxification metabolic tissues. Among them, BdABCB5 and BdABCB6 were significantly overexpressed in the midgut and Malpighian tubules, respectively. Furthermore, with the exception of BdABCB6, the expression levels of the other six BdABCBs were significantly up-regulated following induction with avermectin, beta-cypermethrin and malathion. Six BdABCBs (BdABCB1-5 and BdABCB7) were knocked down by RNA interference, and the interference efficiencies were 46.58%, 39.50%, 45.60%, 33.74%, 66.37% and 63.83%, respectively. After injecting dsBdABCBs, the mortality of flies increased by 25.23% to 39.67% compared to the control upon exposure to the three insecticides. These results suggested that BdABCBs play crucial roles in the detoxification or tolerance of B. dorsalis to multiple insecticides.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shu-Hang Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
4
|
Timani K, Bastarache P, Morin PJ. Leveraging RNA Interference to Impact Insecticide Resistance in the Colorado Potato Beetle, Leptinotarsa decemlineata. INSECTS 2023; 14:418. [PMID: 37233046 PMCID: PMC10231074 DOI: 10.3390/insects14050418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata Say, is a potato pest that can cause important economic losses to the potato industry worldwide. Diverse strategies have been deployed to target this insect such as biological control, crop rotation, and a variety of insecticides. Regarding the latter, this pest has demonstrated impressive abilities to develop resistance against the compounds used to regulate its spread. Substantial work has been conducted to better characterize the molecular signatures underlying this resistance, with the overarching objective of leveraging this information for the development of novel approaches, including RNAi-based techniques, to limit the damage associated with this insect. This review first describes the various strategies utilized to control L. decemlineata and highlights different examples of reported cases of resistances against insecticides for this insect. The molecular leads identified as potential players modulating insecticide resistance as well as the growing interest towards the use of RNAi aimed at these leads as part of novel means to control the impact of L. decemlineata are described subsequently. Finally, select advantages and limitations of RNAi are addressed to better assess the potential of this technology in the broader context of insecticide resistance for pest management.
Collapse
Affiliation(s)
| | | | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (K.T.); (P.B.)
| |
Collapse
|
5
|
Identification and Functional Characterization of CYP4D2 Putatively Associated with β-Cypermethrin Detoxification in Phortica okadai. Genes (Basel) 2022; 13:genes13122338. [PMID: 36553604 PMCID: PMC9777750 DOI: 10.3390/genes13122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Phortica okadai, a polyphagous pest, serves as a vector for Thelazia callipaeda in China. Currently, there are no effective control strategies for this vector. Agricultural pest control may cause P. okadai to become a threat due to the development of pesticide resistance. Cytochrome P450s (CYP450) plays a significant role in detoxifying xenobiotics in insects. In this study, we performed RNA sequencing of P. okadai exposed to β-cypermethrin for 0 and 1 h and then gene cloning of the five up-regulated CYP450 genes. Three CYP450 genes were successfully cloned, and their expression patterns in different developmental stages and in different tissues were analyzed by RT-qPCR. Pocyp4d2 was observed to have the highest expression in the midgut (fold change 2.82 for Pocyp4d2, 2.62 for Pocyp49a1, and 1.77 for Pocyp28d2). Functional analysis was carried out according to overexpression in S2 cells from the pfastbac1 vector and RNAi with siRNA. The results of the CCK8 assay indicated that the overexpression of the recombinant protein PoCYP4D2 suppressed the decrease in S2 cell viability due to β-cypermethrin. The expression levels of PoCYP4D2 decreased significantly, and the mortality rates increased from 6.25% to 15.0% at 3 h and from 15.0% to 27.5% at 6 h after Pocyp4d2-siRNA injection. These results suggest that Pocyp4d2 may be an essential key gene in the metabolism of β-cypermethrin in P. okadai. This study constitutes a foundation to explore further the functions of P. okadai CYP450 genes in insecticide metabolism.
Collapse
|
6
|
Tandem Mass Tags Quantitative Proteome Identification and Function Analysis of ABC Transporters in Neofusicoccum parvum. Int J Mol Sci 2022; 23:ijms23179908. [PMID: 36077305 PMCID: PMC9456026 DOI: 10.3390/ijms23179908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum can cause twig blight of the walnut (Juglans spp.), resulting in great economic losses and ecological damage. We performed proteomic tandem mass tags (TMT) quantification of two Neofusicoccum parvum strains with different substrates, BH01 in walnut substrate (SW) and sterile water (SK), and BH03 in walnut substrate (WW) and sterile water (WK), in order to identify differentially expressed proteins. We identified 998, 95, and 489 differentially expressed proteins (DEPs) between the SK vs. WK, SW vs. SK, and WW vs. WK comparison groups, respectively. A phylogenetic analysis was performed to classify the ABC transporter proteins annotated in the TMT protein quantification into eight groups. Physicochemical and structural analyses of the 24 ATP-binding cassette (ABC) transporter proteins revealed that 14 of them had transmembrane structures. To elucidate the functions of these transmembrane proteins, we determined the relative expression levels of ABC transporter genes in strains cultured in sodium chloride, hydrogen peroxide, copper sulfate, and carbendazim mediums, in comparison with pure medium; analysis revealed differential upregulation. To verify the expression results, we knocked out the NpABC2 gene and compared the wild-type and knockout mutant strains. The knockout mutant strains exhibited a higher sensitivity to antifungal drugs. Furthermore, the virulence of the knockout mutant strains was significantly lower than the wild-type strains, thus implying that NpABC2 plays a role in the drug resistance of N. parvum and affects its virulence.
Collapse
|
7
|
Denecke S, Rankić I, Driva O, Kalsi M, Luong NBH, Buer B, Nauen R, Geibel S, Vontas J. Comparative and functional genomics of the ABC transporter superfamily across arthropods. BMC Genomics 2021; 22:553. [PMID: 34281528 PMCID: PMC8290562 DOI: 10.1186/s12864-021-07861-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ATP-binding cassette (ABC) transporter superfamily is comprised predominantly of proteins which directly utilize energy from ATP to move molecules across the plasma membrane. Although they have been the subject of frequent investigation across many taxa, arthropod ABCs have been less well studied. While the manual annotation of ABC transporters has been performed in many arthropods, there has so far been no systematic comparison of the superfamily within this order using the increasing number of sequenced genomes. Furthermore, functional work on these genes is limited. RESULTS Here, we developed a standardized pipeline to annotate ABCs from predicted proteomes and used it to perform comparative genomics on ABC families across arthropod lineages. Using Kruskal-Wallis tests and the Computational Analysis of gene Family Evolution (CAFE), we were able to observe significant expansions of the ABC-B full transporters (P-glycoproteins) in Lepidoptera and the ABC-H transporters in Hemiptera. RNA-sequencing of epithelia tissues in the Lepidoptera Helicoverpa armigera showed that the 7 P-glycoprotein paralogues differ substantially in their tissue distribution, suggesting a spatial division of labor. It also seems that functional redundancy is a feature of these transporters as RNAi knockdown showed that most transporters are dispensable with the exception of the highly conserved gene Snu, which is probably due to its role in cuticular formation. CONCLUSIONS We have performed an annotation of the ABC superfamily across > 150 arthropod species for which good quality protein annotations exist. Our findings highlight specific expansions of ABC transporter families which suggest evolutionary adaptation. Future work will be able to use this analysis as a resource to provide a better understanding of the ABC superfamily in arthropods.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece.
| | - Ivan Rankić
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
| | - Olympia Driva
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Megha Kalsi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Ngoc Bao Hang Luong
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Benjamin Buer
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - Ralf Nauen
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - Sven Geibel
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece.,Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|